SimMechanics™

User’s Guide

R2013b

MATLAB&SIMULINK®

<+)} MathWorks:

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
SimMechanics™ User’s Guide

© COPYRIGHT 2002-2013 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

March 2012 Online only New for Version 4.0 (Release R2012a)
September 2012 Online only Revised for Version 4.1 (Release R2012b)
March 2013 Online only Revised for Version 4.2 (Release R2013a)

September 2013 Online only Revised for Version 4.3 (Release R2013b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Multibody Modeling

Spatial Relationships

Working with Frames 1-2
Frames 1-3
Frame Types, 1-3
Frame Transforms 14
Frame Networks 1-5

Representing Frames 1-7
Identity Relationships 1-8
Translation and Rotation 1-9
Interpreting a Frame Network 1-10

World and Reference Frames 1-13
World Frame 1-13
Reference Frame 1-16

Frame Transformations 1-19
Rigid and Time-Varying Transformations 1-19
Rigid Transformation Example 1-22
Reversing Rigid Transformations 1-25

Rotation Methods 1-28
Specifying Rotationc ..., 1-28
Aligned AXeS ..o e e 1-28
Standard AXiS e 1-29
Arbitrary AXiS ...ttt e 1-30

Translation Methods 1-32
Specifying Translation ciiiuue.... 1-32
Cartesianiii e e 1-32
Standard AXiS e 1-33
Cylindrical 0ttt 1-34

iii

iv

Represent Binary Link Frame Tree 1-36

Model OVerviewouuiiiiii . 1-36
Modeling Approach 1-36
Dimensions and Transforms 1-38
Build Model e e 1-39
Generate Binary Link Subsystem 1-40
Visualize Model 1-41
Save Custom Block 1-42
Represent Box Frame Tree 1-44
Model Overviewo.ouuiiiii i, 1-44
Start Model i 1-46
Initialize Model Workspace Parameters 1-48
Add Bottom Plane Frames 1-50
Add Top Plane Frames, 1-53
Add Arch Frames 1-57
SaveModel e 1-61
Visualize Box Frame Tree 1-62
Model OVerviewc.ouuiiiiii it 1-62
Build Model e 1-63
Visualize Model 1-65
Find and Fix FrameIssues 1-67
Rigidity Loops i 1-67
Shorted Rigid Transform Blocks 1-68

Rigid Bodies

2

Specifying Solid Geometry 2-2
Simple Shapest i e e 2-2
Advanced Shapesciiiiiii e 2-4

Advanced Solid Shapes 2-7
When to Use Extrusion and Revolution Shapes 2-7
Specifying Extrusion and Revolution Shapes 2-8

Contents

Revolution and General Extrusion Cross-Sections 2-10

Revolution Coordinates are [x z] Pairs 2-10
Revolution Axis Aligns with Z-Axis 2-10
Revolution X-Coordinates Must Equal or Exceed Zero 2-11
Extrusion Coordinates are [x y] Pairs 2-11
Extrusion Axis Aligns with Z-Axis 2-12
Cross-Section Coordinates 2-14
Specifying Coordinatescoiiiiieeneennna.. 2-14
Coordinate Orderiiiiiinnnnennnnn. 2-15
Hollow Cross-Sectionsc.uiiiiinnneneennnnn. 2-16
Path Intersection, 2-18
Specifying Solid Inertia 2-20
Point Masscoiiiii e 2-21
Mass Distributionc. ... 2-22
Inertia Tensorc. it iiinnnnnnnnnn. 2-26
Specifying Inertia Tensorccuuuiiieeeoo... 2-26
Momentsof Inertia 2-26
Products of Inertiaco i, 2-27
Solid Color i, 2-28
Basic Graphic Parameters 2-29
Advanced Graphic Parameters 2-31
RGBA Color Vectorsciiiiiiniiinnnn... 2-34
Model Conettt 2-35
Model Overviewouuiiiii . 2-35
Modeling Approach 2-35
Build Model e e 2-36
Specify Parameter Values 2-38
Visualize Model 2-39
ModelDome00, 2-40
Model OVerviewouuiiiiii e, 2-40
Modeling Approach 2-40
Build Model e e 2-42
Specify Parameter Values 2-43

Visualize Model00, 2-44

vi

Contents

ModelI-Beam 2-45

Model OVerviewouuiiiiii . 2-45
Modeling Approach 2-45
Build Model e e 2-46
Specify Parameter Values 2-48
Visualize I-Beam in Mechanics Explorer 2-49
Model BoxBeam i, 2-51
Model Overviewo.ouuiiiii i, 2-51
Modeling Approach 2-51
Build Model e 2-53
Specify Parameter Values 2-54
Visualize Box Beam in Mechanics Explorer 2-55
Model Binary Link 2-57
Model OVerviewc.ouuiiiiii it 2-57
Modeling Approach 2-57
Solid Propertiesiiiiii. 2-60
Build Model e 2-63
Update Subsystem ..., 2-65
Visualize Model 2-66
Save Custom Library Block 2-68
Model Two-Hole Binary Link 2-69
Model OVerviewc.ouuiiiiii it 2-69
Build Model i e 2-69
Generate Subsystemiiiiii 2-71
Visualize Model 2-74
Save Custom Library Block 2-76
Model Pivot Mount i, 2-77
Model Overviewouuiiiii . 2-77
Modeling Approach 2-77
Build Model e e 2-81
Generate Subsystemiiiiii 2-83
Visualize Model 2-85
Save Custom Library Block 2-86

Multibody Systems

3

Assembling a Multibody Model 3-2
Workflow e e 3-2
Identify Joint Requirements 3-2
Connect Rigid Bodies with Joints 3-3
Specify Joint State Targets 3-4
Check Assemblyc. ittt 3-5

Modeling Joints 3-8
Joint Frames i i 3-9
Joint Primitives 3-9
Joint Primitive Compositionccviuo... 3-11
Assembling Joints i 3-12
Guiding Joint Assembly i, 3-13

Modeling Gear Constraints 3-15
Gear Types ..ot e e e 3-15
Featured Examples 3-16
Inertia, Geometry, and Efficiency 3-16
Using Gear Blocksot 3-16
Assembling Rigid Bodies with Gear Constraints 3-18
Common Gear Assembly and Simulation 3-19
Rack and Pinion Assembly and Simulation 3-22

Identifying Assembly Issues 3-25
Open Model Report 3-25
Model Report Tabs 3-25
Status [consottt e e 3-27

Model Double Pendulum 3-29
Model OVerviewouiiininnnennneennnnnnn 3-29
Modeling Approach 3-30
Build Model 3-30
Guide Model Assembly 3-32
Visualize Model and Check Assembly Status 3-32
Simulate Model 3-35
Save Modelco ittt 3-35

Model Four-Bar Linkage 3-37

vii

viii

Contents

Model Overviewc.iiiiiii i, 3-37

Modeling Approach 3-38
Build Model i 3-39
Specify Block Parametersccv.. .. 3-43
Guide Assembly and Visualize Model 3-43
Simulate Model i 3-46
Save Model i i 3-46
Correct Aiming Mechanism Assembly Error 3-48
Model Overviewc.ciiiiiiiiinniiiineeennnn. 3-48
Explore Model i 3-49
Update Model 3-52
Troubleshoot Assembly Error 3-52
Correct Assembly Error 3-55
Simulate Model i, 3-55
Save Model i i 3-57

Internal Mechanics, Actuation and Sensing

q

Forcesand Torquesc.cciiiiiiiinnnn. 4-2
Force and Torque Blockscciiuiii... 4-2
Actuating Rigid Bodies, 4-2

Joint Actuation i 4-7
Actuation Modes i 4-7
Motion Input e 4-10
Input Handling 4-12
Assembly and Simulation, 4-13

Specify Motion Input Derivatives 4-15

Joint Motion Actuation Restrictions 4-16
Closed Loop Restriction, 4-16
Motion Actuation Not Available in Spherical Primitives .. 4-16
Redundant Actuation Mode Not Supported 4-17
Model Report and Mechanics Explorer Restrictions 4-17
Motion-Controlled DOF Restriction 4-17

Actuating and Sensing with Physical Signals 4-18

Exposing Physical Signal Ports 4-18
Providing Actuation Signals 4-18
Extracting Sensing Signals 4-19
Sensing Spatial Relationships 4-21
Sensing Spatial Relationship Between Joint Frames 4-21
Sensing Spatial Relationship Between Arbitrary
Frames i e e e 4-23
Rotation Measurements 4-26
Measuring Rotation 4-26
Axis-Angle Measurementsc.coiiiieeee... 4-26
Quaternion Measurementsccuuueieeee... 4-28
Transform Measurementscccuuun.. 4-29
Translation Measurements 4-31
Measuring Translation, 4-31
Cartesian Measurementsc.ouiiiimeneeeennn. 4-32
Cylindrical Measurementscouuuieeene... 4-35
Spherical Measurementscciiiiiieeeea... 4-37
Measurement Frames 4-40
Measurement Frame Purpose 4-40
Measurement Frame Types 4-41
Sense Double-Pendulum Motion 4-43
Model Overviewouuiiiiii i, 4-43
Modeling Approach 4-44
Build Model e 4-45
Guide Model Assembly, 4-46
Simulate Model i, 4-46
Save Model i i 4-49
Prescribe Four-Bar Actuation Torque 4-50
Model Overviewc.ciuiiiiininniiiieennnn. 4-50
Four-Bar Linkages, 4-51
Modeling Approach 4-54
Build Model e e 4-55
Simulate Model i, 4-59

ix

Prescribe Four-Bar Motion 4-66

Model OVerviewouuiiiiii . 4-66
Build Model e e 4-67
Simulate Model i, 4-70
Actuate Model Using Sensed Torque 4-72
Guide Model Assembly 4-75
Simulate Updated Model 4-75
Prescribe Two-Bar Motion 4-78
Model Overviewo.ouuiiiii i, 4-78
Add Virtual Joint 4-79
Add Motion Inputs i 4-82
Add Actuation Torque Outputsc.c..o... .. 4-86
Simulate Model i, 4-87

Simulation and Analysis

Simulation

Configure Model for Simulation 5-2

Specify Solver Settingsciiiiiiiinn.... 5-2

Find and Fix Simulation Issues 5-4
Models with For Each Subsystem blocks have limited

visualization 5-4

Models with Model blocks have no visualization 5-4

Simscape local solvers do not work with SimMechanics .. 5-4

Visualization and Animation

6

Visualizing and Inspecting a Model 6-2
Mechanics Explorer Window 6-2
Model Report 6-4
Animation e 6-5

Contents

Configure Visualization Settings 6-6

Change Background Colorccovivoo.o... 6-6
Change View Point, 6-9
Change View Conventioncciiuueeeenn... 6-11
Display Multiple Screens 6-12
Toggle Visibility of Frames and Mass Centers 6-15
Rotate, Pan, and Zoom View 6-18
Rotate, Pan, and Zoom Shortcuts 6-18
Rotate Viewt i i 6-18
Pan View ... e e 6-19
Z00M VIBW i e e e e 6-20
Record Animation Video 6-22
Record Video ittt 6-22
Adjust Video Playback Speed 6-25
Variable-Step Solvers 6-25
Fixed-Step Solvers, 6-27
Find and Fix Visualization Issues 6-29
Mechanics Explorer FailstoOpen 6-29
Model appears with different orientation in Mechanics
Explorer e 6-30
Part appears invisible in Mechanics Explorer 6-32

CAD Import

About CAD Import

7

CAD Translation, 7-2
CAD Translation Stepsttt 7-3
Software Requirementsccuvii. .. 7-3

CADImMPoOrt0 it 7-5
ImportingaModel i 7-5
Generating Import Files 7-6

xi

SimMechanics XML Schema

Install and Register SimMechanics Link Software
SimMechanics Link Installation Requirements
Download SimMechanics Link Software
Install SimMechanics Link Software
Register SimMechanics Link Utility with CAD Platform ..
Link External Application to SimMechanics Link

Softwareiiiii e e e
Register MATLAB as Automation Server
Unregister SimMechanics Link Software

SimMechanics Import XML File
Organization of SimMechanics XML Import File
Root Assembly,
Organization of Assembliescouuuuieeeno...
Organization of Parts

Import Robot Arm Model
Check Import Files
Import Robot Assembly,
Visualize and Simulate Robot Assembly

Import Stewart Platform Model
Check Import Files
Import Modelt
Visualize and Simulate Robot Assembly

Find and Fix CAD Import Issues
Model replaces certain CAD constraints with rigid

CONMECLIONS vttt et ettt ittt e iiiieeeeeennn
Model appears with different orientation in Mechanics

Explorer e e

Part appears invisible in Mechanics Explorer

Deployment

Code Generation

8

About Code Generation 8-2
Simulation Accelerator Modes 8-3
Model Deployment iiiiiiinnnnnnn. 8-3

Configure Four-Bar Model for Code Generation 8-5
Configure Model i iiiiiiino... 8-6

Configure Model for Rapid Acceleration Mode 8-8
Model Overviewc.couieiiiiniiiiiinennnn. 8-8
Configure Model i iiiiiiino... 8-9

Find and Fix Code GenerationIssues 8-12
Variable step Simulink solver requires rsim.tlc target .. 8-12
Simulink solver must be continuous 8-13
SimMechanics does not support visualization in accelerator

MOAE it e e 8-13
SimMechanics Does Not Support Run-Time Parameters .. 8-14

xiii

xiv Contents

Multibody Modeling

Spatial Relationships

¢ “Working with Frames” on page 1-2

® “Representing Frames” on page 1-7

e “World and Reference Frames” on page 1-13

¢ “Frame Transformations” on page 1-19

e “Rotation Methods” on page 1-28

e “Translation Methods” on page 1-32

¢ “Represent Binary Link Frame Tree” on page 1-36
¢ “Represent Box Frame Tree” on page 1-44

® “Visualize Box Frame Tree” on page 1-62

¢ “Find and Fix Frame Issues” on page 1-67

1 Spatial Relationships

1-2

Working with Frames

In this section...

“Frames” on page 1-3
“Frame Types” on page 1-3
“Frame Transforms” on page 1-4

“Frame Networks” on page 1-5

Frames form the foundation of multibody modeling. These constructs encode
the relative position and orientation of one rigid body with respect to another.
In SimMechanics™, every rigid body contains at least one frame.

Consider a double pendulum with two links. Each link has a set of physical
properties that affect its dynamic behavior and appearance—geometry,
inertia, and color. Yet, none of these properties contain information about the

Working with Frames

spatial arrangement of the links. To position and orient one link with respect
to another, you need frames.

You relate two rigid bodies in space by connecting two frames together. In
the double pendulum, you connect the end frame of one link to the end frame
of another link using a joint. In turn, each link contains a local reference
frame against which you define the two end frames. You can make two frames
coincident, translate them, or rotate them with respect to each other.

Frames

Frames have one origin and three axes. The origin defines the local zero
coordinate of the frame. This is the point with respect to which you measure
translation — the distance between two frames. The axes define the directions
in which the components of a 3—D vector are resolved. For example, if you
measure the translation vector between two frame origins, you can resolve the
vector components along the axes of the base frame. For more information,
see “Measurement Frames” on page 4-40.

>_

Frame Types

A multibody model generally contains two frame types: global and local. The
global frame represents the world. It is inertial and defines absolute rest in
a model. In SimMechanics, you represent the global frame with the World
Frame block. This block is available in the Frames and Transforms library.

1-3

1 Spatial Relationships

The World frame is uniquely defined in every model. You can add multiple
World Frame blocks to a model, but they all represent the same frame.

A local frame represents a position and orientation in a rigid body. It can
move with respect to the World frame, but not with respect to the rigid body
itself. Because it can move with respect to the World frame, a local frame is
generally non-inertial. To add a local frame to a rigid body, you use the Rigid
Transform block. You can add multiple local frames to a rigid body—to define
the position and orientation of joints, to apply an external force or torque,

or to sense motion. For more information, see “Frame Transformations” on
page 1-19.

Frame Transforms

To separate two frames in space, you apply a frame transformation between
them. In SimMechanics, two frame transformations are possible: rotation
and translation. Rotation changes the relative orientation of two frames.
Translation changes their relative position.

‘r

Rigid transformations fix spatial relationships for all time. When you rigidly
connect two frames, they move as a single unit. They cannot move with

1-4

Working with Frames

respect to each other. In SimMechanics, you apply a rigid transformation
with the Rigid Transform block.

Note Frame transformations are important in multibody models. The Rigid
Transform block is among the most commonly used in SimMechanics.

You can also relate to frames with a time-varying transformation. In this
case, the rotation, translation, or both, can vary as a function of time. One
example is the connection between two links in a double-pendulum. Two
frames, one on each link, connect with a joint that allows their spatial
relationship to vary with time.

To add a time-varying transformation, you use joint blocks. These blocks
allow frame transformations to vary with time. However, unlike the Rigid
Transform block, you cannot directly specify the time-dependence of the
frame transformation. This dependence follows directly from the dynamics
of the model.

Frame Networks

A single rigid body may have multiple frames. For example, a simple binary
link — a link with two joints — generally has one reference frame near the
geometry center and two frames at the joint locations. More complex rigid
bodies may have yet more frames. In fact, SimMechanics imposes no limit
on the number of frames a rigid body can have. You can add as many frames
as your application requires.

The set of frames that belong to a rigid body form a frame network. Like
other networks, it is often convenient to organize frames hierarchically. You
can, for example, organize the frames of a binary link such that its two joint
frames are defined with respect to the geometry center frame. In this simple
example, the frame network contains two hierarchical levels: a top level
containing the geometry center frame, and a lower level containing two joint
frames. More complex rigid bodies generally have more hierarchical levels.

1-5

1 Spatial Relationships

1-6

Concepts

Reference

W/

Peg hole

The top hierarchical level contains the parent frame. Lower hierarchical
levels contain children frames. Children frames can in turn contain their own
children frames. All frames in a frame network depend, directly or indirectly,
on the parent frame. This is because the frame transformations used to define
the children frames ultimately reference the parent frame.

¢ “Frame Transformations” on page 1-19
e “Representing Frames” on page 1-7
® “Sensing Spatial Relationships” on page 4-21

Representing Frames

Representing Frames

In this section...

“Identity Relationships” on page 1-8

“Translation and Rotation” on page 1-9

“Interpreting a Frame Network” on page 1-10

You represent frames with frame ports, lines, and nodes. Each of these frame
entities represents one frame. You connect one frame entity to any other
using a connection line. When you do so, you apply a spatial relationship
between the two frames. Spatial relationships that you can specify include:

¢ Identity — Make two frames coincident with each other.

¢ Translation — Maintain an offset distance between two frame origins.

¢ Rotation — Maintain an angle between two frames.

The figure illustrates these spatial relationships. Letters B and F represent
the two frames between which you apply a spatial relationship.

Identity Translation Rotation

A frame port is any port with the frame icon . A frame line is any connection
line that joins two frame ports. A frame node is the junction point between
two or more frame lines. You can connect one frame entity only to another

1-7

1 Spatial Relationships

1-8

frame entity. Connecting frame ports, lines, or nodes to other types of ports,
lines, or nodes is invalid. For example, you cannot connect a frame port to a
physical signal port.

Identity Relationships

To make two frames coincident in space, connect the corresponding frame
entities with a frame line. The frame line applies a rigid identity relationship
between the two frames. During simulation, the two frames can move only as
a single unit. They cannot move with respect to each other. The figure shows
three ways to make two frames coincident.

Connect Two Frame Ports Connect Two Frame Lines

\ \
| |
Solid Sokd!

Connect Two Frame Nodes

Alternatively, use the Weld Joint block to make two frames coincident. By
connecting two frame entities to the base and follower frame ports of this
block, you make them coincident for all time. Use the Weld Joint block to
rigidly connect two frames that belong to different rigid bodies. In the figure,
a Weld Joint block makes two solid reference frames coincident in space.

Representing Frames

Connect Frames with Weld Joint Block

43}

Waid Joint

- Y}

Note If you apply an identity relationship with the Weld Joint block, check
that a Solid or Inertia block rigidly connects to the joint frames. Failure to do
so results in a degenerate mass error during simulation.

Translation and Rotation

To separate two frames in space you use the Rigid Transform block. By
connecting two frame entities to the base and follower frame ports of this
block, you apply the rigid transformation that the block specifies. Rigid
transformations include translation and rotation.

You can apply an offset distance between two frame origins, a rotation angle
between the frame axes, or both. Two frames that you connect using a Rigid
Transform block behave as a single entity. If you specify neither translation
or rotation, the Rigid Transform block represents the identity relationship.
The two frames become coincident in space. In the figure, a Rigid Transform
block applies a rigid transformation between two solid reference frames.

Connect Frames with Rigid Transform Block

Figid Trara form

s.m -

1-9

1 Spatial Relationships

Interpreting a Frame Network

As an example, consider the frame network of a binary link. SimMechanics
provides a model of this rigid body. To open it, at the MATLAB® command
line enter sm_compound_body. Double-click subsystem Compound Body to
view the underlying block diagram. The figure shows this block diagram.

M ain ﬂ
Link
¥
[] L_'l []
(T» 0 = = FRO = o2)

Hole Frame ba e Peg Frame
End Cap Peg

Transform i Transform
' End Cap)_ 'I ;aaf:-lr:nce Peg '

To represent the binary link, the Compound Body subsystem contains three
solids. These represent the main, peg, and hole sections. Three frames provide
the position and orientation of the three solids according to the guidelines
that section “Identity Relationships” on page 1-8 introduces. Each group of
frame ports, lines, and nodes that directly connect to each other represents
one frame. The figure shows the three frames in the block diagram.

1-10

Representing Frames

— & <
.'. l .‘.

Hole Frame Reference Frame Peg Frame

Two Rigid Transform blocks represent the spatial relationships between
the three frames. One block translates the hole frame with respect to the
reference frame along the common -X axis. The other block translates the
peg frame with respect to the reference frame along the common +X axis.
The figure shows these two blocks.

1-11

1 Spatial Relationships

PN ! " o S
L
Translate Translate
Along -X Along +X
Related ¢ “Represent Box Frame Tree” on page 1-44
Exqmples ¢ “Represent Binary Link Frame Tree” on page 1-36

Concepts “Working with Frames” on page 1-2
“Frame Transformations” on page 1-19
“World and Reference Frames” on page 1-13

“Find and Fix Frame Issues” on page 1-67

1-12

World and Reference Frames

World and Reference Frames

In this section...

“World Frame” on page 1-13

“Reference Frame” on page 1-16

Two preset frames are available in SimMechanics: World and Reference.
These are standalone frames with respect to which you can define other
frames in a model. New frames can in turn serve as the basis to define yet
other frames. However, directly or indirectly, all frames depend on either
World or Reference frames. Both frames are available as blocks in the Frames
and Transforms library.

o f [[] g
Ref
)_ F‘E:EHDE =1 /{: [B ",J‘\‘.E P World Frame
A s = P ¥ L
Rigid Transform
Transform Sensor

Frames and Transforms. Library

World Frame

The World frame represents the external environment of a mechanical system.
It is always at absolute rest, and therefore experiences zero acceleration. As
a consequence, centripetal and other pseudo-forces are not present in the
world frame, and it is said to be inertial. Rigidly connecting any frame to the
World frame makes that frame also inertial. To add the World frame to a
model, use the World Frame block.

1 E

b

1-13

1 Spatial Relationships

The World frame is the ultimate reference frame. Its position and orientation
are predefined and do not depend on any other frame. This property makes
the World frame invaluable. You can always apply a transform to the World
frame and obtain a new frame. Applying a transform to the resulting frame in
turn yields more new frames, all indirectly related to the World frame. The
result is a frame tree with the World frame at the root. The figure shows such
a frame tree for a double-pendulum system.

Double-Pendulum Frame Tree

W

I‘.I[‘:'l‘lr\»j i

. World
' \‘1‘
t Reference
; Peq hole
{. Reference
Feg hole

The double-pendulum block diagram is based on this frame tree. The World
Frame block identifies the root of the frame tree. A Revolute Joint block
applies the variable transform that relates the World frame to the binary link
peg frame. A second Revolute Joint block applies a similar variable transform
between the hole and peg frames of adjoining binary links. The figure shows
this block diagram.

1-14

World and Reference Frames

=0

Solver Configuration

Mechanis m
Configuration

o

- wig

"

World Frame

Ele /,’I::III = E ElE_» FlH = [

Waorld - Lirk 1 Link1 - Link 2
lirskc 1 lirk 2

The World frame is present in every model. However, the World Frame block
1s strictly optional. If you do not add this block to a model, SimMechanics
assigns one of the existing frames as the World frame. This implicit World
frame connects to the rest of the model via an implicit 6-DOF joint, which in
the absence of counteracting forces allows a machine to fall under gravity.

You can connect multiple World Frame blocks to a model. However, all World
Frame blocks represent the same frame. In this sense, the World frame is
unique. You can add multiple World Frame blocks to simplify modeling tasks,
e.g., sensing motion with respect to the World frame. The figure shows the
model of a double-pendulum with two World Frame blocks. Both World
Frame blocks represent the same frame.

1-15

1 Spatial Relationships

Word Famei |/

Transform
Sensor

nhay_ki

Soker Configuaion

Reference Frame

The Reference frame represents the root of a rigid body or multibody
subsystem. Within a subsystem, it denotes the frame against which all
remaining frames are defined. To add a Reference frame, use the Reference
Frame block. Use this block to mark the top level of a subsystem frame tree.

) -

[

Applying a transform to the Reference frame yields other frames. Applying
transforms to these other frames yields still more frames. The overall

set of frames forms a frame tree with the Reference frame at the root.

The figure shows such a frame tree for one of the binary links used in the
double-pendulum system.

1-16

World and Reference Frames

» Reference

The block diagram of the binary link subsystem is based on this frame tree.
The following figure shows the binary link block diagram. The Reference
Frame block identifies the root of the frame tree. Rigid Transform block
to_hole adds the hole frame. Rigid Transform block to_peg adds the peg
frame. It is a simple task to add the main, peg, and hole solids once these
frames are defined.

1-17

1 Spatial Relationships

1-18

'
Reference
Frame 'JE: -

hole frame - reference frame : .' eq frame
_ 5 o A g

H

Concepts

[F]

= :

tz_hole to peq

The distinguishing feature of the Reference frame is that it can move with
respect to other frames. Depending on the dynamics of a model, a Reference
frame can accelerate, giving rise to pseudo-forces that render this frame
non-inertial. Rigidly connecting any frame to a non-inertial Reference frame
makes that frame also non-inertial.

The Reference frame is present in every subsystem. However, the Reference
Frame block is strictly optional. If you do not add this block to a subsystem,
SimMechanics assigns one of the existing frames as the Reference frame.

¢ “Working with Frames” on page 1-2
¢ “Frame Transformations” on page 1-19
e “Representing Frames” on page 1-7

Frame Transformations

Frame Transformations

In this section...

“Rigid and Time-Varying Transformations” on page 1-19
“Rigid Transformation Example” on page 1-22

“Reversing Rigid Transformations” on page 1-25

To place a solid in space, with a given position and orientation, you use
frames. By connecting the solid reference frame to another frame, you resolve
its position and orientation within the model. For example, connecting the
solid reference frame directly to the World frame causes their origins and
axes to coincide. However, if the model does not yet contain the desired frame,
you must first add it.

Adding a frame is the act of defining its position and orientation. Because
these properties are relative, you must always define a frame with respect to
another frame. Every model starts with one of two frame blocks you can use
as reference: World Frame or Reference Frame. As a model grows, so does the
number of frames that you can use as a reference.

Rigid and Time-Varying Transformations

The spatial relationship between the two frames, the existing and the new,
is called a frame transformation. When the transformation is fixed for all
time, it is rigid. Two frames related by a rigid transformation can move with
respect to the world, but never with respect to each other. In SimMechanics,
you add a new frame by applying a rigid transformation to an existing frame.
The block you use for this task is the Rigid Transform block.

1-19

1 Spatial Relationships

1-20

Frame transformations can also vary with time. In this case, the two frames
that the transformation applies to can move with respect to each other. In
SimMechanics, joint blocks provide the degrees of freedom that allow motion
between two frames. Depending on the joint block, frames can move along
or about an axis. For example, the Revolute Joint block allows two frames
to rotate with respect to each other about a common +Z axis. Likewise, the
Prismatic Joint block allows two frames to rotate with respect to each other
along a common +Z axis. For more information about joints, see “Modeling
Joints” on page 3-8.

Frame Transformations

You can apply two rigid transformations: rotation and translation. Rotation
changes the orientation of the follower frame with respect to the base
frame. Translation changes the position of the follower frame with respect
to the base frame. A third, implicit, transformation is available: identity.
This transformation is marked by the absence of both frame rotation and
translation, making base and follower frames coincident in space.

1-21

1 Spatial Relationships

Every rigid transformation involves two frames: a base and a follower. The
base frame is a reference, the starting point against which you define the
new frame. Any frame can act as the base frame. When you apply a rigid
transformation, you do so directly fo the base frame. The follower frame

is the new frame — the transformed version of the base frame. The Rigid
Transform block identifies base and follower frames with frame ports B and
F, respectively.

Rigid Transformation Example

As an example, consider a binary link. You can model this rigid body with
three elementary solids: main body, peg, and hole sections. This type of rigid
body is known as compound. Each solid has a local reference frame, which
1s fixed with respect to the solid, but which can move with respect to the
world. The figure shows the binary link compound rigid body and the three
solids that comprise it.

1-22

Frame Transformations

When modeling the binary link, the goal is to place the peg at one end of the
link, and the hole section at the other end. The proper approach is to apply

a rigid transformation between the main peg and peg reference frames, and
main body and hole section reference frames. The transformations specify the
separation distance and rotation angle, if any, between each pair of frames.
Because the transformations are rigid, they constrain the solids to move as a
single unit — a rigid body. The rigidly connected solids can move together
with respect to the World frame, but never with respect to each other.

The figure shows the set of transformations used to model the binary link.
These include translation, rotation, and identity. No Rigid Transform block
is required to apply an identity transformation. See “Representing Frames”
on page 1-7.

1-23

1 Spatial Relationships

1-24

The block diagram, shown in the following figure, reflects the structure of
the binary link. Three Solid blocks represent the main body, peg, and hole
sections. Their R ports identify the respective reference frames. Two Rigid
Transform blocks, named to_hole and to_peg apply the rigid transformations
that relate the solid pairs main—hole and main—peg.

Frame Transformations

'
Reference
Frame 'JE: -

hole frame - reference frame : ,' eq frame
_ 5 o A g

H

[F]

=~ P

Reversing Rigid Transformations

Rigid transformations describe the operation that takes the base frame into
coincidence with the follower frame. In this sense, the transformation acts
on the base frame. Switching base and follower port frames causes the
transformation to act on a different frame, changing the relationship between
the two frames. The result is a follower frame with different position and
orientation and, as a consequence, a different rigid body subsystem.

Consider the binary link system. In the original configuration, rigid
transformations translate the peg to the right of the main body and the hole
to the left. To accomplish this, the main body frame connects to the base
port frame of the corresponding Rigid Transform blocks, while the hole and
peg frames connect to the follower port frames. When you switch base and
follower frame ports, the transformations instead translate the main body to
the right of the peg and to the left of the hole.

1-25

1 Spatial Relationships

ik
Reference
Fi =
rame ..‘JE:
I
io_haole to_peg
-’-I]
& 1 E " ."';LE m = -/“‘HE &
)= ri.»_
B

" =} =]

1-26

While in the first case the peg translated to the right of the main body, in the
second case the peg translated to the left. The same principle applies to the
hole. The figure shows the effect of switching base and follower frames in both
Rigid Transform blocks of the binary link block diagram.

Frame Transformations

Concepts

“Rotation Methods” on page 1-28

“Translation Methods” on page 1-32

“Frame Transformations” on page 1-19
“Represent Binary Link Frame Tree” on page 1-36

1-27

1 Spatial Relationships

Rotation Methods

1-28

In this section...

“Specifying Rotation” on page 1-28
“Aligned Axes” on page 1-28
“Standard Axis” on page 1-29

“Arbitrary Axis” on page 1-30

You can specify frame rotation using different methods. These include aligned
axes, standard axis, and arbitrary axis. The different methods are available
through the Rigid Transform block. The choice of method depends on the
model. Select the method that is most convenient for the application.

Specifying Rotation

Rotation is a relative quantity. The rotation of one frame is meaningful only
with respect to another frame. As such, the Rigid Transform block requires
two frames to specify a transformation: base and follower. The transformation
operates on the base frame. For example, a translation along the +Z axis
places the follower frame along the +Z axis from the base frame. Reversing
frame ports is allowed, but the transformation is reversed: the base frame is
now placed along the +Z axis from the follower frame.

Aligned Axes

Rotate two frames with respect to each other by aligning any two axes of one
with any two axes of the other. The figure illustrates the aligned axes method.

Rotation Methods

Aligned Axis Rotation

Step 1 - Align axis pair 1.
Follower = +X
Base = +Y

Slep 2 - Align axis pair 2
Fallower = +Y
Base =+Z

Standard Axis

Rotate frames with respect to each other about one of the three base frame
axes: X, Y, or Z.

1-29

1 Spatial Relationships

Stancard Axis Rotation

Rotation About Base +X Axis

N
| L
| o
o
| \‘\
1) - F
s 5
Rotation About Base -X Axis
$ ‘
| B/
—
S
/
i
1) - F A
s 5
a

Arbitrary Axis

Rotate two frames with respect to each other about an arbitrary axis resolved
in the base frame.

1-30

Rotation Methods

Concepts

Arbitrary Axis Rotation

s 4

x ¥

Rotation B About Axis with Compenents [ax ay az)

'\

“Translation Methods” on page 1-32

“Rotation Measurements” on page 4-26
“Translation Measurements” on page 4-31
“Represent Binary Link Frame Tree” on page 1-36

1-31

1 Spatial Relationships

Translation Methods

1-32

In this section...

“Specifying Translation” on page 1-32
“Cartesian” on page 1-32

“Standard Axis” on page 1-33

“Cylindrical” on page 1-34

You can specify frame translation using different methods. These include
Cartesian, standard axis, and cylindrical. The different methods are available
through the Rigid Transform block. The choice of method depends on the
model. Select the method that is most convenient for the application.

Specifying Translation

Translation is a relative quantity. The translation of one frame is meaningful
only with respect to another frame. As such, the Rigid Transform block
requires two frames to specify a translation: base and follower. The
transformation operates on the base frame. For example, a translation along
the +Z axis places the follower frame along the +Z axis from the base frame.
Reversing frame ports is allowed, but the transformation is reversed: the base
frame is now placed along the +Z axis from the follower frame.

Cartesian

Translate follower frame along arbitrary Cartesian vector resolved in the
base frame.

Translation Methods

Carlesian Translation

i

Translation Along Cartesian X, Y, and Z Axes

4

Standard Axis

Translate follower frame along one of the three axes of the base frame.

1-33

1 Spatial Relationships

Standard Axis Translation

Translation Along Base X Axis

i
i) M -
v
/x
v .

Cylindrical

Translate follower frame along cylindrical axes resolved in the base frame.

1-34

Translation Methods

Cylingrical Translation

Translation Along Base Z, R, and §) Axes

4

'}

Concepts ® “Translation Measurements” on page 4-31
e “Rotation Methods” on page 1-28
¢ “Rotation Measurements” on page 4-26

1-35

1 Spatial Relationships

Represent Binary Link Frame Tree

In this section...

“Model Overview” on page 1-36

“Modeling Approach” on page 1-36

“Dimensions and Transforms” on page 1-38
“Build Model” on page 1-39

“Generate Binary Link Subsystem” on page 1-40
“Visualize Model” on page 1-41

“Save Custom Block” on page 1-42

Model Overview

In this example, you model the frame tree for a binary link subsystem. This
frame tree contains one Reference frame and two end frames for the joints.
The Reference frame identifies the main body of the link. It is labeled main.
The end frames identify the peg and hole sections of the link. They are
labeled, peg and hole, respectively.

ik

&

Modeling Approach

Modeling a complete binary link is a twofold task in which you specify:

1-36

Represent Binary Link Frame Tree

1 Frames

2 Solids

This example guides you through step 1 — modeling the frame tree for a
binary link. The figure shows the resulting block diagram for this step.

'
Reference
Frame ’JE:

e R [, o A,
; = = =
to_hole to_peg

Once you have completed this example, you can complete step 2 — adding to
the frame tree the solids that comprise the binary link. The figure shows the

final block diagram for the binary link subsystem.

1-37

1 Spatial Relationships

1-38

hole frame

1

hole

Reference
Frame

Fc\l_'

o
—]

meain

Dimensions and Transforms

You can promote subsystem reusability by parameterizing link dimensions
in terms of MATLAB variables. In this example, you initialize the variables
in a subsystem mask. You can then specify their numerical values in the
subsystem dialog box. Refer to the table for the dimensions needed to model
the binary link frame tree.

Dimension MATLAB Variable
Length L_Link
Width W_Link
Thickness T Link

A Reference Frame block identifies the location of the Reference frame. Two
Rigid Transform blocks define the position of the end frames with respect to
the Reference frame. In this example, you label these blocks to_peg and
to_hole. Refer to the table for the associated transforms.

Represent Binary Link Frame Tree

End Frame Rigid Transform Translation [X Y Z]
Rlacle
Peg to_peg [L_Link/2 0O
3/2*T_Link]
Hole to_hole [-L_Link/2 0 0]

Build Model

Having defined the transforms required to add the end frames, you can now

build the model:

1 Start a new model.

2 Drag the following blocks to the model.

Block Quantity Library

Reference Frame 1 Frames and
Transforms

Rigid Transform 2 Frames and
Transforms

Solver Configuration 1 Simscape™ Utilities

3 Connect and name the blocks as shown in the figure.

Note Pay close attention to Rigid Transform port orientation. Both base
(B) port frames should connect to the Reference Frame port. This ensures
the rigid transform applies fo the Reference frame, and not the end frames.

1-39

1 Spatial Relationships

Reference
Frame

fx)=0

Solver Configuration & hole

to_peg

4 In the Rigid Transform block dialog boxes, expand Translation.

5 In Method, select Cartesian.

6 In Offset, enter the parameters in the table and press OK.

Rigid Transform Block

Offset

to_peg

[L_Link/2 0 3/2*T_Link]

to_hole

[-L_Link/2 0 0]

Generate Binary Link Subsystem

To initialize the MATLAB dimension variables used to specify the frame
transforms, convert the binary link block diagram into a subsystem and use

the subsystem mask:

1 Select the Reference Frame and Rigid Transform blocks.

2 Press Ctrl+G to enclose the blocks in a subsystem.

1-40

Represent Binary Link Frame Tree

binary _link

fix) =0 p———] Connt Conn2 [

Solver Configuration

3 Click the Subsystem block and press Ctrl+M to create a subsystem mask.

4 In the Parameters & Dialog tab, add the following text boxes to a
Parameters group and click OK.

Prompt Name
Length L_Link
width W_Link
Thickness T_Link

5 In the subsystem dialog box, specify these parameters.

Parameter Value
Length 0.2
Width 0.02
Thickness 0.008

Note Parameter values use the default length unit of meter (m).

Visualize Model

Update the model to visualize the frame tree in Mechanics Explorer.

1 Press Ctrl+D to update the diagram.

2 In the Mechanics Explorer toolstrip, click the frame button .

1-41

1 Spatial Relationships

The three frames appear in the visualization pane of Mechanics Explorer.
The default view convention is Z Up (XY Top), which differs from the Y

Up convention used in the example schematics. To change the Mechanics
Explorer view convention to Y Up (XY Front):

¢ In the Mechanics Explorer toolstrip, select Y Up (XY Front) from the
View Convention drop-down list.

Compare the resulting frame tree to the example schematics to confirm the
validity of the transforms specified.

1-42

Save Custom Block

So that you can use it in later examples, save the binary_link subsystem as
a custom library block. If you have not done so, create a new library to save
the block in:

1 In the Simulink® menu bar, click File > New > Library.

2 Drag the binary_link subsystem block to the new library.

Represent Binary Link Frame Tree

3 Save the library with a convenient name (e.g. linkage_elements) in an
accessible folder.

Related e “Model Binary Link” on page 2-57
Examples

1-43

1 Spatial Relationships

Represent Box Frame Tree

1-44

In this section...

“Model Overview” on page 1-44

“Start Model” on page 1-46

“Initialize Model Workspace Parameters” on page 1-48
“Add Bottom Plane Frames” on page 1-50

“Add Top Plane Frames” on page 1-53

“Add Arch Frames” on page 1-57

“Save Model” on page 1-61

Model Overview

In SimMechanics, you can rigidly connect multiple Solid blocks to represent
a complex rigid body. To position and orient different solids with respect to
each other, you create a frame network that you can connect the solids to.
The frame network contains Rigid Transform blocks that specify the spatial
relationships between the different frames. In this example, you represent
the frame tree for a box shape.

Represent Box Frame Tree

The example highlights the Rigid Transform block as the basic tool that you
use to specify spatial relationships between frames and the solids that connect
to them. The complete frame network is complex. It highlights nearly every
type of rigid transformation that you can apply between two frames.

The modeling process in this example contains four stages:
1 Add World Frame (W).

This is the ultimate reference frame against which you define all other
frames.

2 Add the frames of the box bottom plane (frames A-D in the figure).
You define these frames directly with respect to the World frame.
3 Add the frames of the box top plane (frames E-I in the figure).

You define these frames directly with respect to the box bottom plane
frames.

1-45

1 Spatial Relationships

4 Add the frames of the box arch (frames K and J in the figure).

You define these frames directly with respect to the center frame of the
box top plane.

This example is based on model sm_frame_tree, which accompanies your
SimMechanics installation. To open this model, at the MATLAB command
line, enter sm_frame_tree.

Start Model

Start a new model. Then, add a global reference frame that you can use to
define other frames.

Use the World Frame block to represent the World frame:
1 Start a new model.

2 Drag the following blocks into the model.

Library Block Quantity
Frames and World Frame 1
Transforms

Simscape Utilities Solver Configuration 1

3 Connect the blocks as they appear in the figure.

1-46

Represent Box Frame Tree

- wig
w7

World Frame

fixp=0

Sobver
Configuration

To visualize the World frame that you just added, on the Simulink menu bar,
select Simulation > Update Diagram. Mechanics Explorer opens with a
static 3-D display of your model. To view the position and orientation of this
frame, on the Mechanics Explorer tool bar, toggle the frame visibility icon

. Rotate, pan, and zoom to explore.

1-47

1 Spatial Relationships

1-48

J'.‘. create_frame_tree 0
;)77 World_Frame
[-Connection Frames

e

.

3

o

i

Initialize Model Workspace Parameters

To specify the distance offsets between frames, you use Rigid Transform
blocks. In this example, you specify the distance offsets in terms of MATLAB
variables that you initialize in the model workspace. The table lists these

variables.
Dimension Variable
Length L
Width w
Height H

Represent Box Frame Tree

To initialize the MATLAB variables:

1 On the Simulink menu bar, click Tools > Model Explorer.

2 On the Model Hierarchy pane, double-click the name of your model (e.g.
frame_tree).

3 Click Model Workspace.

4 On the Model Workspace pane, in the Data Source drop-down list,
select MATLAB Code.

5 In the MATLAB Code section that appears, enter the following code:

% Size of Cube
L =12;
W = 10;
H = 8;

1-49

1 Spatial Relationships

1-50

6 Click Reinitialize from Source.

Add Bottom Plane Frames

The World frame is the ultimate reference frame in a model. Now that you
added the World frame to your model, you can define other frames with
respect to it. You do this using the Rigid Transform block.

c

To define the four corner frames of the bottom box plane:

1 From the Frames and Transforms library, drag four Rigid Transform
blocks to the model.

2 Connect and name the blocks as they appear in the figure.

Represent Box Frame Tree

Vertex W-A
Transform

. A
=

Vertex W-B
Transform

A
w7
Werld Frame

=0

g /\‘EI

Scher
Configuration

Vertex W-C
Transform

T
s 7k
=

Vertex W-D
Transform

3 Double-click the Vertex W-A Transform block and, in the dialog box, specify

the parameters that the table provides.

Parameter Section Parameter Value
Rotation Method Select Standard Axis
Axis Select +Z
Angle Enter 90 (deg)
Translation Method Select Cartesian
Offset Enter [L/2 W/2 0]
(cm)

1-51

Spatial Relationships

1-52

4 Double-click the Vertex W-B Transform block and, in the dialog box, specify
the parameters that the table provides.

Parameter Section Parameter Value
Rotation Method Select Aligned Axis
Pair Select +X/-X
1 > Follower/Base
Pair Select +Y/-Y
2 > Follower/Base
Translation Method Select Cartesian

Offset

Enter [-L/2 W/2 0]
(cm)

5 Double-click the Vertex W-C Transform block and, in the dialog box, specify
the parameters that the table provides.

Parameter Section Parameter Value

Rotation Method Select Standard Axis
Axis Select +Z
Angle Enter 270 (deg)

Translation Method Select Cartesian
Offset Enter [-L/2 -W/2 0]

(cm)

6 Double-click the Vertex W-D Transform block and, in the dialog box, specify
the parameters that the table provides.

Parameter Section Parameter Value

Rotation Method Select None

Translation Method Select Cartesian
Offset Enter [L/2 -W/2 0]

(cm)

Represent Box Frame Tree

To visualize the frames that you just added, on the Simulink menu bar, select
Simulation > Update Diagram. Mechanics Explorer opens with a static
3-D display of your model. To view the position and orientation of each frame,

on the Mechanics Explorer tool bar, toggle the frame visibility icon .

==

- create_frame_tree_1

;)7; World_Frame

-",_f.” Vertex W_A_Transform
...._,."’ Vertex W_B_Transform
---,_'.'J Vertex 'W_C_Transform
---,_'.'J Vertex 'W_D_Transform
~Connection Frames

(£ o -

4
l

.

=
k.
T

Add Top Plane Frames

You can now define the top plane frames with respect to the bottom plane
frames.

1-53

1 Spatial Relationships

To add the top plane frames:

1 From the Frames and Transforms library, drag five Rigid Transform blocks.

2 Connect and name the blocks as they appear in the figure.

1-54

Represent Box Frame Tree

Wertex W-A VertexA-E
Transform Transform
! Frame A !
=5 /'\: 5 '/““.II]
J= Je=
Wertex W-B Vertex B-F
Transform Transform
! Frame B !
el 7% 5 7xm
== Je=
T
L 5 /‘E.D
777 J=
World Frame Verte W-1
Transform
! Frame C !
fxp=0 ir g '/“E. B '/“E.II'I
== Je=
i S.D'\Er . Wertex W-C Vertex C-G
Configuration Transform Transform
! Frame D !
=s /‘\: 5 '/““.II]
J== Je=
Wertex W-D Vertex D-H
Transform Transform

3 Double-click the following blocks:

e Vertex A-E Transform

e Vertex B-F Transform

e Vertex C-G Transform

e Vertex D-H Transform

4 In each block dialog box, specify the following parameters.

1-55

Spatial Relationships

1-56

Parameter Section Parameter Value
Rotation Method Select None
Translation Method Select Standard Axis
Axis +Z
Offset Enter H (cm)

5 Double-click the Vertex W-I Transform block and, in the dialog box, specify

the following parameters.

Parameter Section Parameter Value

Rotation Method Select Aligned Axes
Pair Select +Y/-Z
1 > Follower/Base
Pair Select +Z/+Y
2 > Follower/Base

Translation Method Select Standard Axis
Axis +Z
Offset Enter H (cm)

To visualize the frames that you just added, on the Simulink menu bar, select
Simulation > Update Diagram. Mechanics Explorer opens with a static
3-D display of your model. To view the position and orientation of each frame,

on the Mechanics Explorer tool bar, check that the frame visibility icon

is toggled on.

Represent Box Frame Tree

3,_- create_frame_tree_2
(b World_Frame

---,: Vertex_A_E_Transform
---,_'.“ Vertex_B_F_Transform
127 Vertex_C_G_Transform
15 Vertex_D_H_Transform
---,_'.0 Vertex_W_A_Transform
---,_'.“ Vertex_W_B_Transform
127 Vertex W_C_Transform
-1 Vertex W_D_Transform
"',_'.0 Vertex_W_I_Transform

- E-E- a5

[#-Connection Frames

AV

I

Add Arch Frames

Finally, add the two arch frames. As before, use the Rigid Transform block to
define these frames. Define them with respect to the center frame of the top
plane (frame I).

1-57

1 Spatial Relationships

To define the arch frames:

1 From the Frames and Transforms library, drag two Rigid Transform blocks.

2 Connect and name the blocks as they appear in the figure.

1-58

Represent Box Frame Tree

Wertex W-A Vertex A-E
Transform Transform
f Frame A i
5 ./.H:E 5 "'f‘iEI
= =
Vertex W-B Vertex B-F
Transform Transform
f Frame B [
5 '”{*.D 5 'f"‘iEI
= =
[l
5 "f“.EI
: =
f Frame |
A= wD 4 Wertex |-J
- 5 .D Transform
=
‘World Frame Vertex W-I \-E ,r“:s
Transform § ~/RE
J=
Vertex |I-K
Transform
[] Frame C]
foxp=0 g “7X[3 g “7k[D
J= J=
_ Sabver Vertex W-C Veertex C-G
Configuraticn Transform Transform
f Frame D [l
5 KD 5 X[
J= J=
Vertex W-D Vertex D-H
Transform Transform

3 Double-click the Vertex I-J Transform block and, in the dialog box, specify

the parameters that the table provides.

Parameter Section Parameter Value

Rotation Method Select Standard Axis
Axis Select +Z
Angle Enter -90 (deg)

1-59

Spatial Relationships

1-60

Parameter Section Parameter Value
Translation Method Select Cylindrical
Radius Enter L/2 (cm)
Theta Enter -90 (deg)
Z Offset Enter W/2 (cm)

4 Double-click the Vertex I-K Transform block and, in the dialog box, specify

the parameters that the table provides.

Parameter Section Parameter Value
Rotation Method Select Standard Axis
Axis Select +Z
Angle Enter -90 (deg)
Translation Method Select Cylindrical
Radius Enter L/2 (cm)
Theta Enter -90 (deg)
Z Offset Enter -W/2 (cm)

To visualize the frames that you just added, on the Simulink menu bar, select
Simulation > Update Diagram. Mechanics Explorer opens with a static
3-D display of your model. To view the position and orientation of each frame,

on the Mechanics Explorer tool bar, check that the frame visibility icon

is toggled on.

Represent Box Frame Tree

}_; create_frame_tree
2 World_Frame
147 Vertex_A_E_Transform
---,: Vertex_B_F_Transform
---,_'.“ Vertex_C_G_Transform
-1 Vertex_D_H_Transform
157 Vertex 1) Transform
-1 Vertex_1K_Transform
---,_'.0 Vertex_W_A_Transform
---,_'.“ Vertex_W_B_Transform
-7 Vertex_W_C_Transform
127 Vertex W_D_Transform
"',_'.“ Vertex_W_I_Transform

[#-Connection Frames

-85 E-E- a5 -

¥ A

AW

Related
Examples

Concepts

Save Model

Save the model as frame_tree in a convenient folder. In a subsequent
example, you use Graphic blocks to represent each frame with a graphic icon.
See “Visualize Box Frame Tree” on page 1-62

® “Visualize Box Frame Tree” on page 1-62

e “Represent Binary Link Frame Tree” on page 1-36
® “Representing Frames” on page 1-7

¢ “Frame Transformations” on page 1-19

¢ “World and Reference Frames” on page 1-13

[]

“Translation Methods” on page 1-32

1-61

1 Spatial Relationships

Visualize Box Frame Tree

In this section...

“Model Overview” on page 1-62
“Build Model” on page 1-63

“Visualize Model” on page 1-65

Model Overview

To visualize a frame or frame network, you can use the Graphic block. By
connecting this block to a frame, you add a graphic icon to that frame. The
graphic icon has zero inertia and it does not affect model dynamics during
simulation. In this example, you use Graphic blocks to add graphic icons to
the box frame tree that you modeled in a previous example. See “Represent
Box Frame Tree” on page 1-44.

1-62

Visualize Box Frame Tree

Build Model

To add a graphic icon to each frame in your model:
1 Open model frame_tree.

This is the model that you created in example “Represent Box Frame
Tree” on page 1-44.

2 From the Body Elements library, drag 12 Graphic blocks to that model.

3 Connect and name the blocks as they appear in the figure.

1-63

1 Spatial Relationships

Vertex W-A Vertex A-E Werte E
Transform Transform Graphics
Frame A o

A A)
i' &I i' Frame E HL_TI

Vertex A 'ﬁ'

Vertex W-B craRni= j—TI Vertex B-F Wertex F
Transform Transform Graphics
/% Frame B /% ,_,..]'
: i - B Il'l I i = R F Frame ; ﬁL—TI

Verte B | TRT
.~ Grastics i’;f
Graphics j?‘;r Frame .J "'51'
R

Frame |

A

. /S‘\D Vertex |-J
i - 4 Ii.l \-ETransfum
-| Wertex L]
‘World Frame ::r:;vn: P'ECPicsI {EI’T j_-/,&gﬁa ﬁ;l,?r
< - rame
Vertex |-K Jiertes
Transform Sraph
FrameC ")
flx=0 j_-/,&m j_'/’&ﬂ Frame G R’-]l.;r
Solver Vertex W-C Ii'l Vertex -G P —
Configuration Transform VerkexC -ﬁ' Trarsfarm R
Graphics W_’;T
Frame v
j‘,-{:kn Ii.l j“_/‘:kﬂ Frame H D@:‘I
Vertex W-D Vertex O-H
Transform 'ﬁ !I Transform

4 Double-click each Graphic block.

5 In the dialog box, specify parameters according to the following table.

1-64

Visualize Box Frame Tree

Graphic Block

Color

Shape

Size

World Frame
Graphics

Vertex 1
Graphics

[0.4 0.

.4]

Sphere

Vertex A
Graphics

Vertex E
Graphics

[1.0 O.

.0]

Vertex B
Graphics

Vertex F
Graphics

[0.0 O.

.0]

Vertex C
Graphics

Vertex G
Graphics

[0.0 O.

.2]

Vertex D
Graphics

Vertex H
Graphics

.0]

Vertex J
Graphics

[1.0 O.

.0]

Vertex K
Graphics

[0.6 O.

.6]

Cube

25

Visualize Model

You can now visualize your model in Mechanics Explorer. To do this, on the
Simulink menu bar, select Simulation > Update Diagram. Mechanics
Explorer opens with a static 3-D display of your model. Rotate, pan, and

zoom to explore.

1-65

1 Spatial Relationships

}_; sm_frame_tree -
2 World_Frame
'Og Vertex_A_Graphics .
'OS Vertex_B_Graphics
'Og Vertex_C_Graphics

é’g Vertex_D_Graphics ‘
|°§ Vertex_E_Graphics

'OS Vertex_F_Graphics
é’g Vertex_G_Graphics

> a

m

'oé Vertex_H_Graphics ‘

(-4 Vertex 1_Graphics

|°§ Vertex_) Graphics i
i’g Vertex_K_Graphics | =
é’g World_Frarme_Graphics

e

Vertex_C_G_Transform
7 Vertex_D_H_Transfarm

" Vertex_1)_Transform
---,: Vertex_I_K_Transform il
oy

-

-5 G- B -

¥ Vertex_B_F_Transform b

b

e Vertex_A_E_Transform ‘ . .

Related ® “Represent Box Frame Tree” on page 1-44
Exqmples “Represent Binary Link Frame Tree” on page 1-36

Concepts “Representing Frames” on page 1-7
“Frame Transformations” on page 1-19
“Rotation Methods” on page 1-28

“Translation Methods” on page 1-32

1-66

Find and Fix Frame Issues

Find and Fix Frame Issues

In this section...

“Rigidity Loops” on page 1-67
“Shorted Rigid Transform Blocks” on page 1-68

If your model contains an invalid frame connection, SimMechanics issues an
error and the model does not simulate. Possible error sources include:

¢ Rigidity loops — Rigidly connecting multiple frames in a closed loop

¢ Shorted Rigid Transform Blocks — Rigidly connecting base and follower

frame ports of a Rigid Transform block

Rigidity Loops

A rigidity loop is a closed loop of Rigid Transform blocks. The loop contains
one redundant Rigid Transform block that over-constrains the subsystem. If
a rigidity loop is present, SimMechanics issues an error and the model does

not simulate.

To remove the simulation error, disconnect one Rigid Transform block. This

step removes the redundant constraint, and allows the model to simulate. The
following figure shows a rigidity loop. The loop contains four Rigid Transform
blocks directly connected to each other.

T
"
e PR

’i
RT4| , =9

RT1

i

a1

ﬂ

=2

33

1-67

1 Spatial Relationships

Shorted Rigid Transform Blocks

A shorted Rigid Transform block contains a direct connection line between
base (B) and follower frames (F). The connection line makes the two port
frames coincident in space. However, the Rigid Transform block enforces a
spatial transformation that translates or rotates one port frame relative to
the other. The result is a conflict in the frame definition.

If a shorted Rigid Transform block is present, SimMechanics issues an
error and the model does not simulate. The error remains even if the Rigid
Transform block specifies no rotation and no translation. To remove the
simulation error, delete the direct connection line between base and follower
frame ports of the Rigid Transform block. The following figure shows a
shorted Rigid Transform block.

Related ¢ “Represent Box Frame Tree” on page 1-44
Exqmples ¢ “Represent Binary Link Frame Tree” on page 1-36

“Representing Frames” on page 1-7
“Frame Transformations” on page 1-19
“Rotation Methods” on page 1-28
“Translation Methods” on page 1-32

Concepts

1-68

Rigid Bodies

e “Specifying Solid Geometry” on page 2-2

e “Advanced Solid Shapes” on page 2-7

¢ “Revolution and General Extrusion Cross-Sections” on page 2-10
® “Cross-Section Coordinates” on page 2-14

® “Specifying Solid Inertia” on page 2-20

¢ “Inertia Tensor” on page 2-26

e “Solid Color” on page 2-28

e “RGBA Color Vectors” on page 2-34

e “Model Cone” on page 2-35

e “Model Dome” on page 2-40

¢ “Model I-Beam” on page 2-45

e “Model Box Beam” on page 2-51

¢ “Model Binary Link” on page 2-57

¢ “Model Two-Hole Binary Link” on page 2-69
¢ “Model Pivot Mount” on page 2-77

2 Rigid Bodies

Specifying Solid Geometry

In this section...

“Simple Shapes” on page 2-2
“Advanced Shapes” on page 2-4

SimMechanics provides a set of shapes that you can use to represent rigid
bodies. You can specify the shapes directly in the Solid block dialog box.

[Solid : Solid ===

Description

Represents a solid combining a geometry, an inertia and mass,
and a graphics component into a single unit. A solid is the common
building block of rigid bodies. The Solid block obtains the inertia
from the geometry and density, from the geometry and mass, or
from an inertia tensor that you specify.

In the expandible nodes under Properties, select the types of
geometry, inertia, and graphic features that you want and their
parameterizations.

Port R is a frame port that represents a reference frame
assocated with the geometry.

Properties
General Bxtrusion hd
Cross-section Cylinder
Length Sphere

& Inertia Brick

& Graphic Ellipsoid
Regular Extrusion

General Extrusion

Revalution
From File

Simple Shapes

Shapes range from simple to advanced. Simple shapes require a small number
of dimensional parameters. The following simple shapes are available.

Specifying Solid Geometry

e Cylinder — Cylinder with custom dimensions, centroid at the solid
reference frame origin, and symmetry axis along the solid reference frame
Z-axis.

® Sphere — Sphere with custom dimensions and center located at the solid
reference frame origin.

® Brick — Brick with custom dimensions along the three Cartesian axes and
centroid located at the block reference frame.

® Ellipsoid — Ellipsoid with custom dimensions with centroid located at
the block reference frame.

® Regular Extrusion — Extruded solid with constant cross-section along
the z-axis and centroid located at the block reference frame. The constant
cross-section 1s a regular polygon with a custom number of sides.

Simple shapes are easier to use than advanced shapes. When modeling a
rigid body, consider using a simple shape as a first approximation. After
successful model assembly, you can add detail to the rigid body. The following
figure shows the four simple shapes, ordered left to right: cylinder, Sphere,
Brick, and E11ipsoid.

The Regular Extrusion shape is more versatile than other simple shapes.
With this shape, you can model solids with constant cross sections.
Cross-sections can have any number of sides, but all lengths and internal
angles are equal.

The following figure shows a set of shapes you can model with the Regular
Extrusion shape.

2-3

2 Rigid Bodies

2-4

Advanced Shapes

Advanced shapes include:

® General Extrusion — Extruded solid with custom cross-section swept
along the z-axis and centroid located at the block reference frame.

e Revolution — Solid of revolution with constant cross-section revolved
about the z-axis and centroid located at the block reference frame.

The shapes require a MATLAB cross-section matrix. To be valid, the matrix
must observe a set of rules. See “Cross-Section Coordinates” on page 2-14.

General Extrusions

For extrusions with irregular cross-section, SimMechanics provides a
General Extrusion geometry. This geometry is among the most versatile
in SimMechanics. You can use it to model shapes with an increased level
of detail.

This shape requires a MATLAB matrix that contains the cross-section
coordinates. The matrix must follow a set of rules that are specific to the
shape. See “Revolution and General Extrusion Cross-Sections” on page 2-10.

The following figure shows some shapes you can model with General
Extrusion.

Specifying Solid Geometry

QVIN

For General Extrusion examples, see:

® “Model I-Beam” on page 2-45
e “Model Box Beam” on page 2-51

Solids of Revolution

Solids that have a constant cross-section about an axis are solids of revolution.
To model these solids, use the Revolution shape.

The Revolution shape requires a MATLAB matrix that contains the
cross-section coordinates. The matrix must follow a set of rules specific
to the Revolution geometry. See “Revolution and General Extrusion

Cross-Sections” on page 2-10.

The following figure shows some shapes you can model with Revolution.

oo

2-5

2 Rigid Bodies

Concepts

“Advanced Solid Shapes” on page 2-7

“Revolution and General Extrusion Cross-Sections” on page 2-10
“Specifying Solid Inertia” on page 2-20

“Solid Color” on page 2-28

Advanced Solid Shapes

Advanced Solid Shapes

In this section...

“When to Use Extrusion and Revolution Shapes” on page 2-7

“Specifying Extrusion and Revolution Shapes” on page 2-8

With the Solid block, you can specify the geometry of a solid. This block
provides a set of standard shapes so that you can easily specify simple shapes,
e.g., Cylinder. For more complex shapes, the block provides two shapes:
General Extrusion and Revolution.

When to Use Extrusion and Revolution Shapes

Use General Extrusion and Revolution shapes to represent solids that are

to complex for standard shapes. The choice of shape depends on the symmetry
of the solid. If the solid has translational symmetry, use General Extrusion.
If the solid has rotational symmetry, use Revolution.

The solid has translational symmetry if its cross-section is constant along its
length axis. The solid has rotational symmetry if its cross-section is constant
about its length axis. The figure shows two solids that you can represent
using Revolution and General Extrusion shapes.

2-7

2 Rigid Bodies

2-8

Both solids are too complex for standard shapes like Cylinder, Brick, or
Sphere. The solid on the left possesses a constant cross-section about its
length axis. You can represent it using shape Revolution. The solid on
the right possesses a constant cross-section along its length axis. You can
represent it using shape General Extrusion.

Specifying Extrusion and Revolution Shapes

To specify General Extrusion and Revolution shapes, you must provide
the cross-section coordinates. Enter these coordinates as a matrix in the
Geometry > Cross-Section parameter of the Solid block dialog box.
SimMechanics connects the coordinate pairs with straight lines to generate
the cross-section shape.

Note To see the Cross-Section parameter, you must first select General
Extrusion or Revolution from the Geometry > Shape drop-down list.

The figure shows the cross-sections that you must specify to represent the
extrusion and solid of revolution introduced in this section. The coordinate

Advanced Solid Shapes

matrices for these cross-sections must follow a set of rules to be valid as input.
For more information, see “Cross-Section Coordinates” on page 2-14.

Solid Extrusion Extrusion Cross-Section

A

Zolid Revalution Revolution Cross-Section

Axis of Revolution

Offset ‘

Use the Length parameter of the General Extrusion shape to specify
the length to extrude the cross-section along. Use the Revolution Angle
parameter of the Revolution shape to specify the angle to sweep the
cross-section about.

Note To see the Revolution Angle parameter, you must first select Custom
from the Geometry > Extent of Revolution drop-down list.

Related ¢ “Model Box Beam” on page 2-51
Exqmples * “Model Dome” on page 2-40
Concepts ® “Cross-Section Coordinates” on page 2-14

“Revolution and General Extrusion Cross-Sections” on page 2-10

2-9

2 Rigid Bodies

Revolution and General Extrusion Cross-Sections

In this section...

“Revolution Coordinates are [x z] Pairs” on page 2-10

“Revolution Axis Aligns with Z-Axis” on page 2-10

“Revolution X-Coordinates Must Equal or Exceed Zero” on page 2-11
“Extrusion Coordinates are [x y] Pairs” on page 2-11

“Extrusion Axis Aligns with Z-Axis” on page 2-12

SimMechanics interprets the coordinate matrices of Revolution and General
Extrusion according to a set of rules. These rules ensure consistency across
all Revolution and General Extrusion shapes.

Revolution Coordinates are [x z] Pairs

SimMechanics maps the cross-section that you specify onto the XZ plane
of the solid reference frame. When you enter the coordinate matrix in the
Cross-Section parameter of the Solid block, SimMechanics treats those
coordinates as [X Z] pairs, in that order.

Axis of Revelution

& X Axs

& 7 Axis

o

Revolution Axis Aligns with Z-Axis

SimMechanics revolves the cross-section that you specify about the Z axis
of the solid reference frame. The revolution axis runs along the thickness
of the revolution.

2-10

Revolution and General Extrusion Cross-Sections

Extrusion § Axis

Revolution X-Coordinates Must Equal or Exceed Zero

The X coordinates of a revolution cross-section must be equal to or greater
than zero. Negative X coordinates causes the cross-section to overlap during
revolution. If you specify a cross-section with negative X coordinates,
SimMechanics issues an error and the model does not simulate.

Extrusion Coordinates are [x y] Pairs

SimMechanics maps the cross-section that you specify onto the XY plane.
When you enter the coordinate matrix in the Cross-Section parameter of
the Solid block, SimMechanics treats those coordinates as [X Y] pairs, in
that order.

2-11

2 Rigid Bodies

Related
Examples

2-12

e X Axis
e Y Axis

Extrusion Axis Aligns with Z-Axis

SimMechanics extrudes the cross-section that you specify along the Z axis of
the solid reference frame. The extrusion axis runs along the length of the

extrusion.

e 2 Axs

¢ “Model Box Beam” on page 2-51
¢ “Model I-Beam” on page 2-45
¢ “Model Cone” on page 2-35

Revolution and General Extrusion Cross-Sections

® “Model Dome” on page 2-40

Concepts ® “Cross-Section Coordinates” on page 2-14
e “Advanced Solid Shapes” on page 2-7

2-13

2 Rigid Bodies

Cross-Section Coordinates

2-14

In this section...

“Specifying Coordinates” on page 2-14
“Coordinate Order” on page 2-15

“Hollow Cross-Sections” on page 2-16

“Path Intersection” on page 2-18

To represent a solid using the Revolution or General Extrusion shapes,
you must provide the cross-section coordinates for that solid. For example,
to represent a beam with a trapezoidal cross-section, you must provide the
coordinates for that trapezoid. You must enter these coordinates according to
a set of rules that ensure SimMechanics properly represents the cross-section
shape.

Specifying Coordinates

The Solid block accepts the cross-section coordinates as an Mx2 matrix.
This matrix contains M rows, each with the coordinates of a cross-section
point. Enter the coordinates sequentially: SimMechanics connects adjacent
coordinate pairs with a straight line to represent the complete cross-section
shape.

The figure shows the cross-section of a trapezoidal beam. SimMechanics
connects adjacent points with straight lines, so you need to provide only four
points. The figure labels these points A, B, C, and D. Specify the coordinates
for these points in the order [A; B; C; and D]. Using the point coordinates in
the figure, the MATLAB matrix for the trapezoid cross-section is:

trapezoid = [X_A, Y_A; X B, Y.B; X C, Y.C; X D, Y_D]

Cross-Section Coordinates

Cross-Section Points Point Coordinates
D C [] A - [J’(_ﬁ. \{_A]
eB-[X_B Y_B]

o C-[X_C,¥_C]

A B o D-[¥_D,¥_D]

SimMechanics automatically connects the first and last points of a coordinate
matrix. This ensures that every cross-section path is closed. For example, in
the trapezoid cross-section, SimMechanics automatically connects point D to
point A. The result is a closed trapezoid path that SimMechanics can extrude.

You can enter the MATLAB matrix directly in the Cross-Section parameter
of the Solid block. The figure shows an example. You can replace the X and Y
coordinates with the numerical values directly, or you can define their values
elsewhere, e.g., a subsystem mask or the model workspace.

B Geometry
Shape General Extrusion -
Cross-section |[X_A Y_A: X.B, Y_B: X.C,Y.C:X.D,Y.D] |m v

Coordinate Order

Any boundary path separates the dense and hollow regions of a cross-section.
The dense region is to the left of the path, and the hollow region is to its

right. The figure illustrates how a cross-section path divides dense and hollow
regions.

2-15

2 Rigid Bodies

2-16

—
m r_q.
-
A Hollow B é’ Path
o

Always enter the cross-section coordinates so that the dense region is to the
left of the arrow connecting one coordinate pair to the next. For example, to
represent the trapezoidal cross-section in the figure, enter the coordinates in
the order [A B C D]. This matrix specifies that the dense region is to the left
of the arrows connecting A to B, Bto C, C to D, and D to A.

Coordinate Order:

I
m

Hollow Cross-Sections

A cross-section need not be dense. You can specify a hollow cross-section.
One example is the cross-section of a box beam. This cross-section has a
rectangular shape with a dense area at the periphery, and a hole at the
center. The figure shows that cross-section.

Cross-Section Coordinates

Box Beam Cross-Section

«Hole

— Material

As with dense cross-sections, you specify a hollow cross-section as a single
path. To do this, you must cut the cross-section across its dense region. By
cutting the cross-section, you can merge the inner and outer paths into a
single path. The figure shows the cut box beam cross-section.

Box Beam Cross-Section

I—-Cut

The cut connects the first and last cross-section coordinate pairs. As with
dense cross-sections, you must specify the coordinate pairs so that the dense
region is to the left of the path. A counterclockwise order satisfies this
requirement for the outer portion of the path. A clockwise order satisfies this
requirement for the inner portion of the path. Always specify all coordinates
as a single path—not as two paths. You do this by connecting the inner and
outer portions of the path through the cut.

The figure shows the order that you specify the cross-section coordinates
in. The cut joins the last outer path point to the first inner path point. You
specify the outer path in a counterclockwise order: [A, B, C, D, E]. You
specify the inner path in a clockwise order: [F, G, H, I, j]. The entire
coordinate matrix is [A, B, C, D, E, F, G, H, I, J]. SimMechanics

2-17

2 Rigid Bodies

automatically closes the path by connecting the last point that you specify (J)
to the first point (A).

Box Beam Cross-Section Quter Path
D
| - - - g -
: A B C D E
Inner Path
‘
F G H I J

To connect the outer path to the inner path through the cut, you must repeat
the first point of each path. For the outer path, you repeat point A (labeled
E). For the inner path, you repeat point F (labeled J). Omitting these points
distorts the cross-section that you specify. The figure shows the cross-section
that results if you omit point E. As before, SimMechanics automatically closes
the path by connecting the last point that you specify (J) to the first point (A).

Box Beam Cross-Section Quter Path
- - [] -
A B C D
Inner Path
F G H I J

Path Intersection

The coordinate matrix must define a path that does not self-intersect. If the
path intersects itself at any point, SimMechanics issues an error and the
model does not simulate. Path intersection is a common error source in hollow
cross-sections. The figure shows a self-intersecting path.

2-18

Cross-Section Coordinates

Self-Intersecting Path

lw)

e 3

A
Il

Related ¢ “Model Box Beam” on page 2-51
Exqmples ® “Model I-Beam” on page 2-45
e “Model Cone” on page 2-35
e “Model Dome” on page 2-40
Concepts ¢ “Revolution and General Extrusion Cross-Sections” on page 2-10

“Advanced Solid Shapes” on page 2-7

2-19

2 Rigid Bodies

Specifying Solid Inertia

In this section...

“Point Mass” on page 2-21
“Mass Distribution” on page 2-22

The inertial properties of a rigid body influence its dynamic behavior. One
example is the flywheel: the greater its inertia, the greater the rotational
energy that it can store. In SimMechanics, you specify the inertial properties
using a Solid or Inertia block. Use a Solid block to specify geometry and color
in addition to inertia. Use an Inertia block to specify only inertia. Both blocks
provide multiple inertia types that you can select. You can represent a solid
as a point mass or as a mass distribution (3-D solid).

Paint Mass 3-0) Mass Distribution

To use the blocks, drag them from the Body Elements library.

2-20

Specifying Solid Inertia

]
Graphic IEL' Inertia Saolid

Body Elements Library

Point Mass

A point mass occupies an infinitesimally small volume. When you treat a
solid as a point mass, you assume its total mass exists at its center of mass.
The moments and products of inertia of a point mass are zero, and you need
only specify the total mass.

Point Mass

Parameters

2-21

2 Rigid Bodies

2-22

Adding a Point Mass to a Model

To position a point mass in a model, connect the block reference frame port
(R) to the frame of your choice. A frame port, line, or node represents the
frame. The point mass coincides with the origin of this frame. For example,
connect the Solid block R frame port to the World Frame block W frame port
to represent a point mass that coincides with the World frame origin.

o W orld Frame ' Sohd
frer

For more information about frames, see “Representing Frames” on page 1-7.

Specifying Point Mass Inertia
To specify the inertial parameters of a point mass:

1 In the block dialog box, expand Inertia.
2 In Type, select Point Mass.

3 In Mass, enter the total mass of the solid.

Mass Distribution

A mass distribution occupies a measurable region of space. All rigid bodies
are 3-D mass distributions. To completely describe a mass distribution, you
specify the total mass, center of mass, moments of inertia, and products of

inertia.

Specifying Solid Inertia

Mass Distribution
Parameters

Center
of Mass

Moments Products
of Inertia of Inertia

You can use two inertia types to represent a mass distribution. Select
Calculate from Geometry to automatically calculate the center of mass,
moments of inertia, and products of inertia from the solid geometry. Select

Custom to manually specify all inertial properties. The Solid block provides
both inertia types. The Inertia block provides only Custom.

Mass Distribution Inertia

Automatically Calculate

Manually Specify
from Geometry

as Custom Inertia

|

——

I
o o &
=,
i " 9
Solid Inertia Solid

2-23

2 Rigid Bodies

2-24

Adding a Mass Distribution to a Model

To position a mass distribution, connect the block reference frame port (R) to
the frame of your choice. A frame, line, or node represents the frame. The
reference frame origin coincides with the origin of this frame. For example,
connect the Solid block R frame port to the World Frame block W frame port
to represent a 3-D mass distribution whose reference frame origin coincides
with the World frame origin.

& W orld Frame I Salkd
brrsd

The center of mass of the solid depends on the inertia type you use. If

you select Custom, the center of mass depends on the coordinates that you
manually specify with respect to the solid reference frame. If you select
Calculate from Geometry, the center of mass depends on the geometry that
you use. For more information, see the Solid block reference page.

Automatically Calculating Inertia

To automatically calculate the center of mass, moments of inertia, and
products of inertia of a mass distribution:

1 In the Solid block dialog box, expand Inertia.
2 In Type, select Calculate from Geometry.

3 Specify the remaining parameters as defined in the Solid block reference
page.

Specifying Solid Inertia

Related
Examples

Note To automatically calculate the inertia of a solid from its geometry, you
must specify a valid SimMechanics shape. If you specify a geometry from

a file, you must manually enter all inertia parameters using inertia type
Custom.

Specifying Custom Inertia
To manually specify all inertia parameters of a mass distribution:

1 In the block dialog box, expand Inertia.
2 In Type, select Custom.

3 Specify the remaining parameters as defined in the Solid block reference
page.

e “Model Binary Link” on page 2-57
® “Model Pivot Mount” on page 2-77

2-25

2 Rigid Bodies

Inertia Tensor

2-26

In this section...

“Specifying Inertia Tensor” on page 2-26
“Moments of Inertia” on page 2-26

“Products of Inertia” on page 2-27

The inertia tensor is a 3X3 matrix that governs the rotational behavior of a
rigid body. This matrix is symmetric: elements with reciprocal indices have
the same value. That is:

Ixy:Iyx’ Iyz:Izy’ sz:Ixz
Because the inertia tensor is symmetric, it requires only six elements. Three

are the moments of inertia and three are the products of inertia. The complete
inertia tensor has the form:

Specifying Inertia Tensor

You can specify the inertia tensor manually, using one of two blocks: Solid
and Inertia. To do this, in the block dialog box select Custom from the
Inertia > Type drop-down menu. In the new set of parameters that appears,
specify the inertia tensor in terms of the moments and products of inertia.

Moments of Inertia

The moments of inertia are the three diagonal terms of the inertia tensor:

Inertia Tensor

In the Moments of Inertia dialog box parameter, enter the three diagonal
elements as a row vector. Enter the elements in the order [I , I, , I,]. These
are the moments of inertia of the solid with respect to a frame whose axes
align with the block reference frame, and whose origin coincides with the

solid center of mass.

Products of Inertia

The products of inertia are the three unique off-diagonal elements. Because
the inertia tensor is symmetric, each off-diagonal element appears twice in
the matrix.

In the Products of Inertia dialog box parameter, enter the three unique
off-diagonal elements. Enter the elements in the order [Iyz, L., Ixy]. One
easy way to remember the element order is to think of the missing subscript
component: x, y, and z respectively. The elements are the products of inertia
of the solid with respect to a frame whose axes align with the block reference
frame, and whose origin coincides with the solid center of mass.

Related ¢ “Model Binary Link” on page 2-57
Exqmples ¢ “Model Pivot Mount” on page 2-77
Concepts e “Specifying Solid Inertia” on page 2-20

2-27

2 Rigid Bodies

2-28

Solid Color

In this section...

“Basic Graphic Parameters” on page 2-29

“Advanced Graphic Parameters” on page 2-31

To make the most of the visualization capability of Mechanics Explorer,

the Solid block provides two parameterizations that you can use to

specify the graphic appearance of a solid: Simple and Advanced. The two
parameterizations accept material color and opacity parameters as input.
Light source parameters are fixed for all models. The table provides a
comparison of the input parameters present in each graphic parameterization.

Graphic Parameter | Simple Advanced

Diffuse Color v

Ambient Color

Specular Color

Emissive Color

Opacity v

SN RN RN RN R

Shininess

As an example, the figure shows two identical elliptical extrusions, one based
on Simple and the other on Advanced graphic parameterizations. In both
cases, the extrusion is completely opaque with a gray diffuse color. The
advanced version adds to the solid a set of blue highlights, through the use of
specular color, and a red ambient hue, through the use of ambient color.

Color Parameter Simple Advanced

Diffuse Color [0.8 0.8 0.8] [0.8 0.8 0.8 1.0]
Ambient Color — [0.1 0.05 0.05 1.0]
Specular Color — [0 0 1.0 1.0]

Solid Color

Solid with Simple color parameterization. Solid with Advanced color parameterization.

The material colors — diffuse, ambient, specular, and emissive — form the
core of the graphical representation of a solid in SimMechanics. You can
specify the material colors in terms of “RGBA Color Vectors” on page 2-34.

Basic Graphic Parameters

Both Simple and Advanced graphic parameterizations require you to specify
the diffuse color and opacity of the solid. Together, these two parameters
represent the graphical core of a SimMechanics solid. The way in which you
specify the parameters differs slightly between the two parameterizations,
but the meaning of each parameter remains the same.

Diffuse Color
Apparent color of a rough solid surface exposed to direct white light.
Diffuse light scatters equally in all directions according to Lambert’s
law, causing the intensity and color of the scattered light to appear the
same from all angles. The diffuse color normally provides the dominant
contribution to the color of a solid surface. In most cases, you can think
of the diffuse color as the “true color” of a solid surface.

2-29

2 Rigid Bodies

2-30

Parameterization Parameter Name | Specification
Used

Simple Color [R G B] vector

Advanced Diffuse Color [R G B A] vector

VOOOO

Opacity

The figure shows the effect of varying the diffuse color of a solid. The
array of spheres have identical graphical properties, with the exception
of Diffuse Color. The RGBA color vector of the diffuse color progresses
from [1 1 1], at the left corner, to [0.85 0.45 0], at the right corner. A
gray ambient color gives the solid a darker appearance.

The opacity is the degree to which a solid blocks light from passing
through. A completely opaque solid blocks all light penetration through
the solid. The opposite of a completely opaque solid is a transparent
solid, which allows all light to pass through. You can reduce the opacity
of a solid in order to improve the visibility of other solids otherwise
blocked from view.

Parameterization | Parameter Name | Specification
Used

Simple Opacity Scalar number (0-1)

Advanced A element of Diffuse | Scalar number (0-1)
Color [R G B A]
vector

The figure shows the effect of varying the opacity of a solid. The array
of spheres have identical graphical properties, with the exception of

Solid Color

Opacity. The opacity value progresses from 0.1, at the left corner, to
1, at the right corner. An opacity value of O represents a completely
transparent, or invisible, solid. An opacity value of 1 represents a
completely opaque solid.

Advanced Graphic Parameters

In addition to the diffuse color and opacity, the Advanced parameterization
provides a set of colors that enhance the 3—D graphical appearance of the
solid. The additional colors include specular, ambient, and emissive colors,
each of which includes an opacity (A) element in the [R G B A] color vector.
You can omit the fourth element in the RGBA vector, in which case the color
uses a maximum opacity value of 1.

Specular Color
The specular color is the apparent color of the glossy highlights arising
from a solid surface exposed to direct light. The size of the specular
highlights depends on the value of the Shininess parameter. The
intensity of the specular color is not uniform in space, and has a strong
dependence on the viewing angle. Changing the specular color changes
only the color of the specular highlights. For most applications, the [R G
B A] vector [0.5 0.5 0.5 1] works well.

The figure shows the effect of varying the specular color of a solid.

The array of spheres have identical graphical properties, with the
exception of Specular Color. The RGBA color vector of the specular
color progresses from [1 1 1 1], at the left corner, to [1 0 0 1], at the right
corner. A gray ambient color gives the solid a darker appearance.

2-31

2 Rigid Bodies

2-32

- N

Ambient Color

The ambient color is the apparent color of a solid surface exposed only to
indirect light. Changing the ambient color changes the overall color of
the entire solid surface. For most applications, the RGBA vector [0.15
0.15 0.15 1] works well.

The figure shows the effect of varying the ambient color of a solid. The
array of spheres have identical graphical properties, with the exception
of the Ambient Color. The RGBA color vector of the ambient color
progresses from [1 1 1 1], at the left corner, to [1 0 0 1], at the right
corner. A gray ambient color gives the solid in the left corner a darker
appearance.

QOO

Emissive Color

The emissive color is the apparent color of light emitted directly by the
solid surface. Examples of solids with a nonzero emissive color include
glowing hot metal, light displays, and the Sun. For most applications,
the RGBA vector [0 0 0 1] works well.

The figure shows the effect of varying the emissive color of a solid. The
array of spheres have identical graphical properties, with the exception
of the Emissive Color. The RGBA color vector of the emissive color
progresses from [1 1 1 1], at the left corner, to [1 0 0 1], at the right
corner. A gray ambient color gives the solid in the left corner a darker
appearance. The glowing appearance of the emissive color differentiates
the emissive color from ambient and diffuse colors.

Solid Color

Shininess
The shininess is a parameter that encodes the size and rate of decay
of specular highlights on a solid surface. A small shininess value
corresponds to a large specular highlight with gradual falloff in highlight
intensity. On the other hand, a large shininess value corresponds to a
small specular highlight with sharp falloff in highlight intensity.

The figure shows the effect of varying the shininess of a solid. The array
of spheres have identical graphical properties, with the exception of
Shininess. The shininess value progresses from 5, at the left corner,
to 25, at the right corner. As the shininess value increases, the area

of the specular highlight decreases, while the falloff rate in highlight
intensity increases.

OO0

Related ® “Model Binary Link” on page 2-57
Exqmples * “Model Pivot Mount” on page 2-77

2-33

2 Rigid Bodies

2-34

RGBA Color Vectors

Related
Examples

The Solid block accepts an RGBA vector as input for the material color
parameters. The RGBA model is based on three primary colors that you
combine to obtain other colors in the spectrum. By varying the proportions
of the three primary colors, it is possible to obtain colors throughout most

of the visible spectrum. The model obtains its name from the first letter of
the three primary colors — red (R), green (G), blue (B). The fourth letter (A)
denotes the solid opacity, the degree to which the solid appears impenetrable
to incident light.

The color parameters of the Solid block accept either 3- or 4-element vectors
specifying the proportions of the primary colors. The 4—element vector has
the form [R G B A] and includes a value for the solid opacity. The 3-element
vector has the form [R G B], and assumes unity value for the solid opacity.

The values of the four parameters fall in the numerical range 0 1. Depending
on the vector element, a value of 0 indicates that the corresponding primary
color is not used to obtain the final color, or that the solid opacity is a
minimum (a completely transparent solid). Likewise, a value of 1 indicates
that a maximum quantity of the corresponding primary color is used to obtain
the final color, or that the solid opacity is a maximum (a completely opaque
solid). To convert RGB values in the range 0-255, divide the [R G B] vector
elements by 255 — e.g. [255 0 0 255]/255 for a completely opaque red color.

The RGBA model applies to the four color types used in SimMechanics —
diffuse, ambient, specular, and emissive. For more information, see “Solid
Color” on page 2-28

e “Model Binary Link” on page 2-57
e “Model Pivot Mount” on page 2-77

Model Cone

Model Cone

In this section...

“Model Overview” on page 2-35
“Modeling Approach” on page 2-35
“Build Model” on page 2-36

“Specify Parameter Values” on page 2-38
“Visualize Model” on page 2-39

Model Overview

You can model solids of revolution using the SimMechanics Revolution
shape. Examples of solids of revolution include cone and circular dome
shapes. In this example, you model a simple solid with cone shape using the
Revolution shape. For an example that shows you how to model a circular
dome solid, see “Model Dome” on page 2-40.

Modeling Approach

To represent the cone geometry, first identify its cross-section shape. This
is the 2-D area that you can revolve about an axis to obtain the 3-D cone.
Then, specify the cross-section coordinate using the Solid block. For more
information, see “Cross-Section Coordinates” on page 2-14. The cone in this
example has a trapezoidal cross-section. The figure shows this cross-section.

2-35

2 Rigid Bodies

2-36

e tan(iy - oh

The [0 0] cross-section coordinate identifies the reference frame origin for this
solid. To place the reference frame at the cone tip, specify the coordinates so
that the [0 0] coordinate is at the tip. By parameterizing the cross-section
coordinates in terms of the relevant cone dimensions, you can quickly change
the cone dimensions without having to reenter the cross-section coordinates.
The figure shows the cross-section dimensions and coordinates that you must
enter to specify the cone.

e A=[0, 0]
= B=]r h]
& C = [rtcos(B). h]
« D= [0 tisin{8), h]

Build Model

Add and connect the blocks to represent the cone. Include a Solver
Configuration block so that you can visualize the solid in Mechanics Explorer
during the modeling process.

1 Start a new model.

2 Add the following blocks to the model.

Model Cone

Library Block Quantity
Body Elements Solid 1
Frames & Transforms | Reference Frame 1
Simscape Utilities Solver Configuration 1

3 Connect the blocks as they appear in the figure.

fxj=0

Sohler
Configuration

Solid

S

Reference
Frame

[

i

4 Double-click the Solid block.

5 In the dialog box, specify the following parameters.

Parameter

Value

Geometry > Shape

Select Revolution

Geometry > Cross-Section

in.

Enter xsection. Specify units of

Graphic > Visual
Properties > Color

Enter rgb

6 Right-click the Solid block and select Create Subsystem from Selection.

2-37

2 Rigid Bodies

2-38

=0

Solver
Configuration

'

,J— R[E—4] Connd
Reference

Frame Subsystem

Specify Parameter Values

In the subsystem mask, initialize the solid parameters. Then, in the
subsystem dialog box, specify their values.

1 Click the Subsystem block and press Ctrl+M to create a subsystem mask.

2 In the Parameters & Dialog tab of the Mask Editor, drag edit boxes

inside the Parameters group and specify the following parameters.

Prompt Name
Base Radius r
Cone Height h
Wall Thickness t
Color rgb

3 In the Initialization tab of the Mask Editor, enter the initialization code
for the xsection variable.

theta = atan(r/);
xsection = [0 0; r h; r-t/cos(theta) h; 0 t/sin(theta)];

4 In the Subsystem block dialog box, specify these parameters

Model Cone

Related
Examples

Concepts

Parameter Value

Base Radius 1

Cone Height 2

Wall Thickness 0.1

Color [0.85 0.45 0]

Visualize Model

You can now visualize the cone that you modeled. To do this, on the Simulink
menu bar, select Simulation > Update Diagram. Mechanics Explorer
opens with a 3-D display of your model. Rotate, pan, and zoom to explore.

Try modifying the cone geometry. To do this, in the subsystem dialog box,
change the dimension parameter values. Then, update the model. The figure
shows some examples.

® “Model Dome” on page 2-40
e “Model I-Beam” on page 2-45
e “Model Box Beam” on page 2-51

e “Advanced Solid Shapes” on page 2-7
® “Cross-Section Coordinates” on page 2-14
¢ “Revolution and General Extrusion Cross-Sections” on page 2-10

2-39

2 Rigid Bodies

Model Dome

2-40

In this section...

“Model Overview” on page 2-40
“Modeling Approach” on page 2-40
“Build Model” on page 2-42

“Specify Parameter Values” on page 2-43
“Visualize Model” on page 2-44

Model Overview

You can model a solid of revolution with a round cross-section. One example is
the circular dome. In this example, you specify the cross-section coordinates
of a circular dome using the MATLAB cos and sin functions. For an example
that shows you how to model a cone-shaped solid, see “Model Cone” on page
2-35.

Modeling Approach

To represent the dome geometry, first identify its cross-section shape. This
1s the 2-D shape that you revolve about an axis to obtain the 3-D dome. You
can then specify the cross-section coordinates using the Solid block. For more
information, see “Cross-Section Coordinates” on page 2-14. The figure shows
the cross-section shape for the dome in this example.

Model Dome

The [0 0] cross-section coordinate identifies the reference frame origin

for this solid. To place the reference frame at dome base center, specify
the coordinates so that the [0 0] coordinate is at the base center. By
parameterizing the cross-section coordinates in terms of the relevant dome
dimensions, you can quickly change the dome dimensions without having
to reenter the cross-section coordinates. The figure shows the cross-section
dimensions and coordinates that you must enter to specify the dome.

theta_cow = {0:1:90)" pu 80,
theta cw = {90:-1:0)"pi"1 B0;

A:B = R*[cos(theta), sin(theta)]
C:D = (R-A)*|cos(theta), sin(theta]]

To define the dome cross-section, first define two angle arrays—one in
counterclockwise order, running from 0-90°; the other in a clockwise
order running from 90-0°. You can then use the first array to define the
outer cross-section coordinates, and the second array to define the inner
cross-section coordinates. You do that using the cos and sin MATLAB
functions.

In this example, you name the counterclockwise angle array theta_ccw.
You name the clockwise angle array theta_cw. You also name the outer
cross-section coordinate array outer_coords and the inner cross-section
coordinate array inner_coords. In the figure, points A through B denote the
outer cross-section coordinates, and points C through D denote the inner
cross-section coordinates.

2-41

2 Rigid Bodies

Build Model

Add and connect the blocks to represent the dome. Include a Solver
Configuration block so that you can visualize the solid in Mechanics Explorer
during the modeling process.

1 Start a new model.

2 Add the following blocks to the model.

Library Block Quantity
Body Elements Solid 1
Frames & Transforms | Reference Frame 1
Simscape Utilities Solver Configuration 1

3 Connect the blocks as they appear in the figure.

faj=D

Soher
Configuration

Salid
.

L@

Reference
Frame

4 Double-click the Solid block and specify the following parameters.

Parameter Value

Geometry > Shape Select Revolution

Geometry > Cross-Section Enter xsection. Specify units of
in.

Graphic > Visual Enter rgb

Properties > Color

2-42

Model Dome

5 Right-click the Solid block and select Create Subsystem from Selection.

faj=D

Soher
Configuration

)_ R Conni

Frame Subsystemn

Specify Parameter Values

In the subsystem mask, initialize the solid parameters. Then, in the
subsystem dialog box, specify their values.

1 Click the Subsystem block and press Ctrl+M to create a subsystem mask.

2 In the Parameters & Dialog tab of the Mask Editor, drag edit boxes

inside the Parameters group and specify the following parameters.

Prompt Name
Radius r
Wall Thickness t

3 In the Initialization tab of the Mask Editor, enter the initialization code
for the xsection variable.

% Circular dome outer coordinates:

theta_ccw = (0:1:90) '*pi/180;

outer_coords = r*[cos(theta_ccw), sin(theta_ccw)];
% Circular dome inner coordinates:

theta_cw = (90:-1:0) '*pi/180;

inner_coords = (r-t)*[cos(theta_cw), sin(theta_cw)];

xsection = [outer_coords; inner_coords];

2-43

2 Rigid Bodies

4 In the Subsystem block dialog box, specify these parameters.

Parameter Value
Radius 1
Wall Thickness 0.1

Visualize Model

You can now visualize the dome that you modeled. To do this, on the Simulink
menu bar, select Simulation > Update Diagram. Mechanics Explorer
opens with a 3-D display of your model. Rotate, pan, and zoom to explore.

Try modifying the dome geometry. To do this, in the subsystem dialog box,
change the dimension parameter values. Then, update the model. The figure
shows some examples.

Related ¢ “Model Cone” on page 2-35
Exqmples ¢ “Model I-Beam” on page 2-45
¢ “Model Box Beam” on page 2-51

Concepts

“Advanced Solid Shapes” on page 2-7
® “Cross-Section Coordinates” on page 2-14
¢ “Revolution and General Extrusion Cross-Sections” on page 2-10

2-44

Model I-Beam

Model I-Beam

In this section...

“Model Overview” on page 2-45
“Modeling Approach” on page 2-45
“Build Model” on page 2-46

“Specify Parameter Values” on page 2-48

“Visualize I-Beam in Mechanics Explorer” on page 2-49

Model Overview

You can model an extrusion using the SimMechanics shape General
Extrusion. Examples of extrusions include the I-beam and box-beam shapes.
In this example, you model a simple solid with I-beam shape using the
General Extrusion shape. For an example that shows you how to model a
box beam, see “Model Box Beam” on page 2-51.

Modeling Approach

To represent the I-beam geometry, first identify its cross-section. This is the
2-D area that you sweep along an axis to obtain the 3-D I-beam. You can then
specify the cross-section coordinates using the Solid block. The figure shows
the I-beam cross-section that you specify in this example.

2-45

2 Rigid Bodies

2-46

The [0 0] coordinate identifies the solid reference frame origin. To place

the reference frame at the center of the I-beam, specify the coordinates so
that the [0 0] coordinate is at the cross-section center. Because the I-beam
cross-section is symmetric about the vertical axis, you need only define the
coordinates for one cross-section half—e.g, the right half. You can then define
the left half coordinates in terms of the right half coordinates.

By parameterizing the cross-section coordinates in terms of relevant I-beam
dimensions, you can quickly change the I-beam dimensions without having
to reenter the cross-section coordinates. The figure shows the cross-section
dimensions and coordinates that you must specify to represent the I-beam.

A F

B E sA w2 2
o8B [wi2,
sC U2, .d]
sD [U2.d]
sE [wi2.d)

E E aF w2, hi2]

-F &

Using the cross-section points that the figure shows, you define the coordinate
matrix as:

right_half = [A; B; C; D; E; F1;
xsection = [right_half; -right_half];

Build Model

Add and connect the blocks to represent the I-beam. Include a Solver
Configuration block so that you can visualize the solid in Mechanics Explorer
during the modeling process.

1 Start a new model.

Model I-Beam

2 Add the following blocks to the model.

Library Block Quantity
Body Elements Solid 1
Frames & Transforms | Reference Frame 1
Simscape Utilities Solver Configuration 1

3 Connect the blocks as they appear in the figure.

fz)=0

Soher
Configuration

Solid

} =R maﬂ

Reference
Frame

4 Double-click the Solid block and specify the following parameters.

Parameter Value

Geometry > Shape Select General Extrusion
Geometry > Cross-Section Enter xsection. Select units of in.
Geometry > Length Enter L. Select units of in
Graphic > Visual Enter rgb

Properties > Color

5 Right-click the Solid block and select Create Subsystem from Selection.

2-47

2 Rigid Bodies

=0

Solver
Configuration

'

,J— R[E—4] Connd
Reference

Frame Subsystem

Specify Parameter Values

In the subsystem mask, initialize the solid parameters. Then, in the
subsystem dialog box, specify their values.

1 Click the Subsystem block and press Ctrl+M to create a subsystem mask.

2 In the Parameters & Dialog tab of the Mask Editor, drag edit boxes

inside the Parameters group and specify the following parameters.

Prompt Name
Length L
Height h
Width w
Thickness t
Color rgb

3 In the Initialization tab of the Mask Editor, enter the initialization code
for the xsection variable and click OK:

d = h/2-t;

right_half = [w/2, -h/2; w/2, -d; t/2, -d;
t/2, d; w/2, d; w/2, h/2];

xsection = [right_half; -right_half];

2-48

Model I-Beam

4 In the Subsystem block dialog box, specify these parameters.

Parameter Value

Length 10

Height 4

Width 2

Thickness 0.3

Color [0.85 0.45 0]

Visualize I-Beam in Mechanics Explorer

You can now visualize the I-beam that you modeled. To do this, on the
Simulink menu bar, select Simulation > Update Diagram. Mechanics

Explorer opens with a 3-D display of your model. Rotate, pan, and zoom to
explore.

Try modifying the I-beam geometry. To do this, in the subsystem dialog box,
change the dimension parameter values. Then, update the model. The figure
shows some examples.

h=2

L “ W o &
t=073 t=02 t=02
Related ¢ “Model Cone” on page 2-35
Exqmples e “Model Dome” on page 2-40

¢ “Model Box Beam” on page 2-51

2-49

2 Rigid Bodies

Concepts e “Advanced Solid Shapes” on page 2-7
® “Cross-Section Coordinates” on page 2-14
¢ “Revolution and General Extrusion Cross-Sections” on page 2-10

2-50

Model Box Beam

Model Box Beam

In this section...

“Model Overview” on page 2-51
“Modeling Approach” on page 2-51
“Build Model” on page 2-53

“Specify Parameter Values” on page 2-54

“Visualize Box Beam in Mechanics Explorer” on page 2-55

Model Overview

You can model an extrusion with a hole. One example is the box beam.
Specifying hollow cross-sections must satisfy the cross-section guidelines. See
“Cross-Section Coordinates” on page 2-14. In this example, you specify the
cross-section coordinates of a box beam. For an example that shows you how
to model an I-beam extrusion, see “Model I-Beam” on page 2-45.

Modeling Approach

To represent the box beam geometry, first identify its cross-section. This is
the 2-D area that you sweep along an axis to obtain the 3-D box beam. You
can the specify the cross-section coordinates using the Solid block. The figure
shows the box beam cross-section that you specify in this example.

2-51

2 Rigid Bodies

2-52

The [0 0] coordinate identifies the solid reference frame origin. To place the
reference frame at the center of the box beam, specify the coordinates so that
the [0 O] coordinate is at the cross-section center. By parameterizing the
cross-section coordinates in terms of relevant box beam dimensions, you

can quickly change the box beam dimensions without having to reenter the
cross-section coordinates. The figure shows the cross-section dimensions and
coordinates that you must specify to represent the box beam.

s AE w2, -hiZ]

B w2 -hi2]
oG W2 N2
oD w2 hiZ|
aFJ -1, -d2)
oG [-d1,d2|
oH [d1,d2]

.l [d1, -42]

Using the cross-section points that the figure shows, you define the coordinate
matrix as:

di w/2-t;

d2 h/2-t;

outer_path = [-w/2,-h/2; w/2,-h/2; w/2,h/2;

-w/2,h/2; -w/2,-h/2];

inner_path = [-d1,-d2; -d1,d2; d1,d2; di -d2; -di1,-d2];
xsection = [outer_path; inner_path];

For more information about specifying the hollow cross-section coordinates,
see “Hollow Cross-Sections” on page 2-16.

Model Box Beam

Build Model

Add and connect the blocks to represent the box beam. Include a Solver
Configuration block so that you can visualize the solid in Mechanics Explorer
during the modeling process.

1 Start a new model.

2 Add the following blocks to the model.

Library Block Quantity
Body Elements Solid 1
Frames & Transforms | Reference Frame 1
Simscape Utilities Solver Configuration 1

3 Connect the blocks as they appear in the figure.

fzp=0

Sohler
Configuration

Solid

’j_ " maﬂ

Reference
Frame

4 Double-click the Solid block and specify the following parameters.

Parameter Value
Geometry > Shape Select General Extrusion
Geometry > Cross-Section Enter xsection. Select units of in.

2-53

2 Rigid Bodies

Parameter Value

Geometry > Length Enter L. Select units of in
Graphic > Visual Enter rgb

Properties > Color

5 Right-click the Solid block and select Create Subsystem from Selection.

fx=0

Solver
Configuration

')

1 = £] Connd
Reference

Frame Subs ystem

Specify Parameter Values

In the subsystem mask, initialize the solid parameters. Then, in the
subsystem dialog box, specify their values.

1 Click the Subsystem block and press Ctrl+M to create a subsystem mask.

2 In the Parameters & Dialog tab of the Mask Editor, drag edit boxes

inside the Parameters group and specify the following parameters.

Prompt Name
Length L
Height h
Width w
Thickness t
Color rgb

2-54

Model Box Beam

3 In the Initialization tab of the Mask Editor, enter the initialization code
for the xsection variable and click OK:

di w/2-t;

d2 h/2-t;

outer_path = [-w/2,-h/2; w/2,-h/2; w/2,h/2;

-w/2,h/2; -w/2,-h/2];

inner_path = [-d1,-d2; -d1,d2; d1,d2; di1 -d2; -di1,-d2];
xsection = [outer_path; inner_path];

4 In the Subsystem block dialog box, specify these parameters.

Parameter Value

Length 10

Height 4

Width 2

Thickness 0.2

Color [0.85 0.45 0]

Visualize Box Beam in Mechanics Explorer

You can now visualize the box beam that you modeled. To do this, on the
Simulink menu bar, select Simulation > Update Diagram. Mechanics
Explorer opens with a 3-D display of your model. Rotate, pan, and zoom to
explore.

Try modifying the box beam geometry. To do this, in the subsystem dialog
box, change the dimension parameter values. Then, update the model. The
figure shows some examples.

2-55

2 Rigid Bodies

2-56

Related

Examples

Concepts

[
« T

=
P
=
[

poun
-\.;L

I
o
L

I
o
3

e “Model I-Beam” on page 2-45
¢ “Model Cone” on page 2-35
¢ “Model Dome” on page 2-40

e “Advanced Solid Shapes” on page 2-7
® “Cross-Section Coordinates” on page 2-14

“Revolution and General Extrusion Cross-Sections” on page 2-10

Model Binary Link

Model Binary Link

In this section...

“Model Overview” on page 2-57
“Modeling Approach” on page 2-57
“Solid Properties” on page 2-60
“Build Model” on page 2-63
“Update Subsystem” on page 2-65
“Visualize Model” on page 2-66

“Save Custom Library Block” on page 2-68

Model Overview

In example “Represent Binary Link Frame Tree” on page 1-36, you modeled
the frame tree of a binary link rigid body. In this example, you add to that
frame tree the solid properties of the binary link: geometry, inertia, and color.

Modeling Approach

To model a binary link, you must use multiple Solid blocks. Each Solid block
represents an elementary portion of the binary link. Rigid bodies that you
model using multiple Solid blocks are called compound rigid bodies. The
compound rigid body technique reduces a single complex task (modeling the

2-57

2 Rigid Bodies

entire binary link shape) into several simple tasks (modeling the main, hole,
and peg sections of the binary link).

To use the compound rigid body technique:

1 Divide shape into simple sections.

Dividing the shape simplifies the modeling task in more complex cases.
You can divide the binary link into three simple sections: main, peg, and
hole, shown in the figure.

h[:l|&

©

2 Represent each section with a Solid block.

Each section should be simple enough to model using a single Solid block.
In the binary link example, you can represent sections main and hole

2-58

Model Binary Link

hole

Peg
(D -

=

using SimMechanics shape General Extrusion, and section peg with
SimMechanics shape Cylinder.

main

9 9

3 Rigidly connect Solid blocks to rigid body frame tree.

Rigid connections ensure the different solid sections move as a single rigid
body. Connect the Solid blocks to the binary link frame tree to apply the
correct spatial relationships between the solid sections.

2-59

2 Rigid Bodies

hole main peg
Raferencs
Frame 'J-r_’ -
O

9 o/ oy

Solid Properties

You model the binary link as a compound rigid body subsystem. In this
subsystem, three Solid blocks represent the basic solid sections of the binary
link. Each solid section has a shape and a local reference frame that you
connect to the binary link frame tree. Two SimMechanics shapes are used:
General Extrusion and Cylinder.

You can promote subsystem reusability by parameterizing solid properties

in terms of MATLAB variables. In this example, you initialize the variables
in a subsystem mask. You can then specify their numerical values in the
subsystem dialog box. The table provides the dimensions needed to model the
binary link solid sections. In the previous example, “Represent Binary Link
Frame Tree” on page 1-36, you used the first three dimensions to specify the
spatial relationships between the different binary link frames.

Dimension MATLAB Variable
Length L_Link
Width W_Link

2-60

Model Binary Link

Dimension MATLAB Variable
Thickness T Link
Peg Radius R_Peg

SimMechanics shape General Extrusion requires you to specify a set of
cross-section coordinates. This is a MATLAB matrix with all the [X Y]
coordinate pairs needed to draw the cross-section. Straight line segments
connect adjacent coordinate pairs.

Coordinate matrices must obey a set of rules. The most important rule is that
the solid region must lie to the left of the line segment connecting adjacent
coordinate pairs. For more information, see “Cross-Section Coordinates”

on page 2-14. The figure shows the coordinates required to specify the
cross-section shapes of solid sections main and hole.

2-61

2 Rigid Bodies

main Cross-5Saction

a0 deg
Jlli- deg
| theta_cow = (80:-1:-80) *pif1 80 theta cow = (-80:1:90) *pif180;
-80 deg
-20 deg
Letf Coordinates: Right Coordinates:
-L_Linkf2 W_Link/2; [L_Link/2+W_Linkf2"cos{theta_cow)
L Linki2+R_Peg*cositheta ow) W_Link/2*sin(theta_cow)]
R_Peg*sin{theta_cw); -L_Linkf2 “W_Link/2]
| L)
14, ”f:.
W e
m“e

hole Cross-Section

80 deqg

theta cow = (80:1:270) *pii180; -theta_cw = (270:-1-80)*pif180

it
&
F M Inner Coordinates
. = = i]
Quter Coordinates: = e e -
iz i o LaE = F_Peqg*[cos{theta_cw) sin(theta_cw)]
W_Linkf2*[cositheta_cow) sin{theta_cow)] 2 i
c
o,
o

This example assumes the binary link is made of Aluminum, with a mass
density of 2,700 kg/m3. The binary link has a blue color, while the peg has

2-62

Model Binary Link

an orange color. The orange color helps identify the peg when, in subsequent
examples, you connect the peg of one link to the hole of another link. As
with all parameters in this example, you specify density and color in terms
of MATLAB variables. The table summarizes the variables and the values
that you use in this example.

Solid Sections:

MATLAB Variable Value

Property

main/peg/hole: rho 2700

Density

main/hole: Color rgb_link [0.25 0.4 0.7]
peg: Color rgb_peg [1 0.6 0.25]

Build Model

Drag blocks into the model canvas and specify the relevant block parameters.

1 Open the frame tree model you built in example “Represent Binary Link
Frame Tree” on page 1-36.

Sobver Configuration

fixj=0 p————F]Connt Conn2 [£]

binary_link

2 Open the binary_link subsystem.

2-63

2 Rigid Bodies

2-64

Reference
Frame

R

PR - :rv- [A o AT,

H
tz_hole to peq
3 From the SimMechanics Body Elements library drag three Solid blocks
into the model.
4 Connect and name the blocks as shown in the figure.
Reference 1
Frame ')E—c -
(]
RN - o iz B P
hole } a)‘J - peg
to_hole to_peg
]

- - I

5 In the Solid block dialog boxes, specify these parameters.

Model Binary Link

Parameter hole main Peg

Geometry > Shapeelect General Select General Select Cylinder
Extrusion Extrusion

Geometry > CrosEstation Enter —

hole coords

main_coords

Geometry > Radius — Enter R_Peg
Geometry > Lenglthter T_Link Enter T_Link Enter 2*T_Link
Geometry > Densdlityter rho Enter rho Enter rho

Graphic > Colox

Enter rgb_link

Enter rgb_Link

Enter rgb_Peg

Update Subsystem

In the subsystem mask, initialize the MATLAB variables you entered for
the block parameters.

1 Select the subsystem block and press Ctrl+M to create a subsystem mask.

2 In the Parameters & Dialog tab of the Mask Editor, drag four edit boxes

into the Parameters group and specify these parameters.

Prompt Name
Peg Radius R_Peg
Mass Density rho
Link Color [R G B] rgb_Link
Peg Color [R G B] rgb_Peg

3 In the Initialization tab of the Mask Editor, define the extrusion
cross-sections and press OK:

% Cross-section of main:

theta_ccw = (-90:1:90) '*pi/180;
theta_cw = (90:-1:-90) '*pi/180;
peg_end = [L_Link/2+W_Link/2*cos(theta_ccw)...

W_Link/2*sin(theta_ccw)];
hole_end = [-L_Link/2 W_Link/2;

2-65

2 Rigid Bodies

2-66

-L_Link/2+R_Peg*cos(theta_cw)...
R_Peg*sin(theta_cw); -L_Link/2 -W_Link/2];
main_coords = [peg_end; hole_end];

% Cross-section of hole:

theta_ccw = (90:1:270) '*pi/180;

theta_cw = (270:-1:90) '*pi/180;

hole coords = [W_Link/2*cos(theta_ccw)

W _Link/2*sin(theta_ccw);
R_Peg*cos(theta_cw) R_Peg*sin(theta_cw)];

4 In the binary_link subsystem block dialog box, specify these parameters.

Parameter Value

Length 0.2

Width 0.02
Thickness 0.008

Peg Radius 0.004

Mass Density 2700

Link Color [R G B] [0.25 0.4 0.7]
Peg Color [R G B] [1 0.6 0.25]

Note Values are in the default physical units: m for length quantities and
kg/ (m~3) for mass density.

Visualize Model

Update the model to visualize the binary link rigid body in Mechanics
Explorer.

¢ Press Ctrl+D to update the diagram. The binary link appears in the

visualization pane of Mechanics Explorer.

Model Binary Link

To obtain the view used in the illustrations for this example:

1 In the View Convention drop-down list, select Y Up (XY Front).

2 In the Mechanics Explorer toolstrip, click the isometric view button @ .

Compare the result with the example schematics to confirm the validity of
the solid properties specified.

2-67

2 Rigid Bodies

2-68

Related
Examples

Concepts

Save Custom Library Block

So that you can use it in later examples, save the binary link subsystem as a
custom library block.

1 Open the custom block library that you created in “Represent Binary Link
Frame Tree” on page 1-36

2 Drag the binary_link subsystem block to the library.

3 Save the library as linkage_elements.

“Model Two-Hole Binary Link” on page 2-69
“Model Pivot Mount” on page 2-77

“Model Double Pendulum” on page 3-29
“Model Four-Bar Linkage” on page 3-37

“Representing Frames” on page 1-7
“Specifying Solid Geometry” on page 2-2
“Solid Color” on page 2-28
“Cross-Section Coordinates” on page 2-14

Model Two-Hole Binary Link

Model Two-Hole Binary Link

In this section...

“Model Overview” on page 2-69
“Build Model” on page 2-69
“Generate Subsystem” on page 2-71
“Visualize Model” on page 2-74

“Save Custom Library Block” on page 2-76

Model Overview

In this example, you model a two-hole binary link as a rigid body. Three
Solid blocks represent the main body and hole sections of the link. Two Rigid
Transform blocks define the spatial relationships between the three solids.
This example is a variation of “Model Binary Link” on page 2-57.

Build Model

Drag blocks onto a new model and specify their parameters:

1 Start a new model.

2 Drag the following blocks to the model.

2-69

2 Rigid Bodies

2-70

Block Library Quantity
Solver Configuration Simscape > Utilities | 1
Reference Frame SimMechanics 1
Second Generation
(SM 2G) > Frames
and Transforms
Rigid Transform SimMechanics 2
Second Generation
(SM 2G) > Frames
and Transforms
Solid SimMechanics 3

Second Generation
(SM 2G) > Body
Elements

3 Connect and name the blocks as shown in the figure.

Be sure to flip the to_holel block. Its B frame port should face the main

Solid block.

fix)=0

Reference
Frame

| Ak

Sobhver
Configuration

main

e
to_hale1
1

4 For the Solid blocks, specify these parameters.

1= .
to_hole2

Model Two-Hole Binary Link

Parameter hole1 main hole2
Geometry > Shap&elect General | Select General | Select General
Extrusion Extrusion Extrusion
Geometry > CrosEstation Enter Enter
hole1 _coords main_coords hole2_ coords
Geometry > LengtEnter T_Link | Enter T_Link Enter T_Link
Inertia > Densitly Enter rho Enter rho Enter rho

Graphic > Visudl Enter rgb_1ink | Enter rgb_link | Enter rgb_link
Properties > Color

5 For the Rigid Transform blocks, specify these parameters.

Parameter to_holel to_hole2
Translation > Method Standard Axis Standard Axis
Translation > Axis +X +X

Translation > Offset L Link/2 +L_Link/2

Generate Subsystem

Enclose the binary link blocks in a Subsystem block, define the general
extrusion coordinates, and specify the relevant parameter values:

1 Select all blocks except Solver Configuration and press Ctrl+G.. Rename
the subsystem block two_hole_binary_link for use in subsequent example.

2-71

2 Rigid Bodies

2-72

two_hole binary link

fx) =0 Iy

Sobver

Configuration

Conn

Conn2 [£]

2 Select the subsystem block and press Ctrl+M to create a subsystem mask.

3 In the Parameters & Dialog tab of the Mask Editor, drag six edit boxes

into the Parameters group and specify the following parameters.
Prompt Name

Length (m) L _Link

width (m) W_Link

Thickness (m) T link

Peg Hole Radius (m) R_Peg

Mass Density (kg/m"3) rho

Link Color [R G B] rgb_Link

Model Two-Hole Binary Link

Y Mask Editor : two_hole_binary_link |-]
Icon & Ports| Parameters & Dialag | Initialization | Documentation
Controls Dialog box Property editor
Parameter Type Prompt Mame = Properties
%< MaskType> DescGroupVar Name rgb_link
%< MaskDescription> DescTextWar Value Ul
Parameters ParameterGroupVar Prompt L|r1.k Color [R G B]
Length {m) L_Link Type
Display Width (m) W_Link El Attributes
EEE Thickness (m) T_Link Evaluate
p) Tunable
eg Hole Radius (m) R_Peg
-3 #5 Mass Density (kg/m*3) rho Read only]
Action N B
ever save
- | = Dia
Drag or double-click items in left palette to add to dialeg. talog
Use Delete key to remove items from dialeg. Enable
Visible
Callback 4
E Layout
Item location

Unmask

| OK || Cancel || Help || Apply |

4 In the Initialization tab of the Mask Editor, define the extrusion cross

sections and click OK:

% Cross-section of main:

theta_holel
theta_hole2

hole1_end

R_Peg*sin(theta_hole1);

(90:-1:-90) '*pi/180;
(270:-1:90) '*pi/180;

[-L_Link/2 W_Link/2;...
-L_Link/2+R_Peg*cos(theta_holel)...

-L_Link/2 -W_Link/2];

2-73

2 Rigid Bodies

hole2_end = [L_Link/2 -W_Link/2;...
L_Link/2+R_Peg*cos(theta_hole2)...
R_Peg*sin(theta_hole2); L_Link/2 W_Link/2];

main_coords = [holel1_end; hole2_end];
% Cross-section of holet:

theta_ccw = (90:1:270) '*pi/180;
theta_cw = (270:-1:90) '*pi/180;

hole1_coords = [W_Link/2*cos(theta_ccw) W_Link/2*sin(theta_ccw);...

R_Peg*cos(theta_cw) R_Peg*sin(theta_cw)]

% Cross-section of hole2:
theta_ccw = (-90:1:90) '*pi/180;
theta_cw = (90:-1:-90) '*pi/180;

hole2_coords = [W_Link/2*cos(theta_ccw) W_Link/2*sin(theta_ccw);...

R_Peg*cos(theta_cw) R_Peg*sin(theta_cw)];

5 In the binary_link subsystem block dialog box, specify these parameters.

Parameter Value

Length (m) 0.2

Width (m) 0.02
Thickness (m) 0.008

Peg Hole Radius (m) 0.004

Mass Density (kg/m”3) 2700

Link Color [R G B] [0.25 0.4 0.7]

Visualize Model

Update the model to visualize the binary link rigid body in Mechanics
Explorer.

1 Press Ctrl+D to update the diagram. The binary link appears in the
visualization pane of Mechanics Explorer.

2-74

Model Two-Hole Binary Link

2 In the Mechanics Explorer toolstrip, change the View convention to Y up
(XY Front). Then, click the isometric button.

2-75

2 Rigid Bodies

2-76

Related
Examples

Save Custom Library Block

So that you can use it in later examples, save the binary link subsystem as a
custom library block:

1 Create a custom block library, if you have not yet done so.

2 Drag the two_hole_binary_link subsystem block into the custom block
library.

3 Save the custom block library as linkage_elements for use in subsequent
examples.

e “Model Binary Link” on page 2-57
“Model Pivot Mount” on page 2-77
“Model Four-Bar Linkage” on page 3-37

Model Pivot Mount

Model Pivot Mount

In this section...

“Model Overview” on page 2-77
“Modeling Approach” on page 2-77
“Build Model” on page 2-81
“Generate Subsystem” on page 2-83
“Visualize Model” on page 2-85

“Save Custom Library Block” on page 2-86

Model Overview

In this example, you model a simple pivot mount. This mount is a compound
rigid body with a hexagonal shape and a protruding cylindrical peg. You
represent the hexagonal shape using solid shape Regular Extrusion. You
then offset the protruding peg from the hexagonal shape using a Rigid
Transform block. In later examples, you use this mount to support mechanical
linkages like the double pendulum and the four bar system.

Modeling Approach

To model the pivot mount, you use two Solid blocks. Because the pivot mount
has a hexagonal shape, you can model it using the Regular Extrusion shape.
To represent the cylindrical peg, you use the Cylinder shape.

2-77

2 Rigid Bodies

2-78

=

ﬂ

Peg

Each shape has a reference frame with origin at the geometry center. To
offset the cylindrical peg with respect to the hexagonal mount, you apply a
rigid transform between the two reference frames. You do this using the
Rigid Transform block.

The Z axes of the two reference frames align with the cylindrical and extrusion
axes of the peg and mount, respectively. Assuming the two solids have both
have thickness 7T, the rigid transform between the two reference frames is a
translation 7" along the common Z axis.

Model Pivot Mount

-7 -
Reference Frame| |
mn
to_worid to_peg
Coe—=] B g5 7 (2>
Conn & & Conn2
]

In later examples, you connect the pivot mount to a binary link using a
revolute joint. One example is a double pendulum that moves due to gravity.
For this example, it helps to rotate the Z axis of the mount so that it is
orthogonal to the World frame Z axis. This task:

e Aligns the pendulum rotation plane with the default gravity vector [0
0 -9.81] m/s"2

¢ Aligns the pivot mount so that the pendulum appears vertically in
Mechanics Explorer.

To perform this task, you rotate the pivot mount by 90° about the Y axis
of the World frame using a Rigid Transform block. The figure illustrates
the effect of this transform.

2-79

2 Rigid Bodies

2-80

['-~
K
I g =[0 0 -8.81] (mis"2)

o4
Conn1

Hexagon

M

Model Pivot Mount

Build Model

To model the pivot mount:

1 Start a new model.

2 Drag the following blocks to the model.

Block Library Quantity
Solid SimMechanics > Second
Generation
(SM 2G) > Body
Elements
Rigid Transform SimMechanics > Seconil

Generation (SM
2Gx) > Frames and
Transforms

Reference Frame SimMechanics > Second
Generation (SM
2G) > Frames and
Transforms

Solver Configuration Simscape > Utilities | 1

3 Connect and name the blocks as shown in the figure.

Note Include the disconnected frame line (red dashed line). This line
becomes important when you generate a subsystem for the pivot mount. To
add this line, right-click on the solid frame line and drag to the right.

2-81

2 Rigid Bodies

2-82

=0

Reference Frame

BR

to_world

Sobver Configur ation

to_peq

efr Ak
=

Hexagon

1

' Feg

4 Double-click Solid block Hexagon and specify the parameters in the table.

Parameter

Value

Geometry > Shape

Regular Extrusion

Geometry > Number of Sides 6
Geometry > Outer Radius R_Hexagon
Geometry > Length T

Inertia > Density rho

Graphic > Color

rgb_Hexagon

5 Double-click Solid block Peg and specify the parameters in the table.

Parameter Value
Geometry > Shape Cylinder
Geometry > Radius R_Peg
Geometry > Length 2*T

Model Pivot Mount

Parameter Value
Inertia > Density rho
Graphic > Color rgb_Peg

6 Double-click Rigid Transform block to_peg and specify the parameters

in the table.

Parameter Value
Translation > Method Standard Axis
Translation > Axis +Z
Translation > Offset 3/2*T

7 Double-click Rigid Transform block to_world and specify the parameters

in the table.

Parameter Value
Rotation > Method Standard Axis
Rotation > Axis Y

Rotation > Angle 90

Generate Subsystem

You can now generate a subsystem to encapsulate the pivot mount block
diagram. The subsystem mask provides a convenient place to initialize the
MATLAB variables that you defined the block parameters with. To generate

the subsystem:

1 Select all blocks except Solver Configuration.

2 Press Ctrl+G to enclose the blocks in a subsystem. Name the subsystem

pivot_mount.

2-83

2 Rigid Bodies

fixj=0 | Conni Conn2 [5]

Solver
Configuraticn

pivot_mount

3 Select the pivot_mount subsystem block and press Ctrl+M to create a
subsystem mask.

4 In the Parameters & Dialog tab of the Mask Editor, drag six edit boxes

S5
into the Parameters group and specify their properties. Click OK.

Prompt Name
Hexagon Outer Radius (m): R_Hexagon
Hexagon Thickness (m): T

Mass Density (kg/m~3): rho
Hexagon Color [R G B]: rgb_Hexagon
Peg Radius (m): R_Peg

Peg Color [R G B]: rgb_Peg

5 In the pivot_mount block dialog box, specify these parameters.

Parameter Value
Hexagon Outer Radius (m): 0.04

Hexagon Thickness (m): 0.008

Mass Density (kg/m*3): 2700

Hexagon Color [R G B]: [0.25 0.4 0.7]

2-84

Model Pivot Mount

Peg Radius (m): 0.004
Peg Color [R G B]: [1 0.6 0.25]

Visualize Model
Update the model to visualize the pivot mount in Mechanics Explorer.

¢ With the model window active, press Ctrl+D. The pivot mount appears in
the visualization pane of Mechanics Explorer.

To obtain the view used in the illustrations for this example:

® In the Mechanics Explorer toolstrip, click the isometric view button @ .

2-85

2 Rigid Bodies

2-86

Related
Examples

Concepts

Save Custom Library Block

So that you can use it in later examples, save the pivot mount subsystem as
a custom library block. If you have not done so, create a new library to save
the block in:

1 In the Simulink menu bar, click File > New > Library.
2 Drag the pivot_mount block to the new library.

3 Save the library as linkage_elements.

¢ “Represent Binary Link Frame Tree” on page 1-36
“Model Binary Link” on page 2-57

® “Representing Frames” on page 1-7

® “Cross-Section Coordinates” on page 2-14
® “Specifying Solid Inertia” on page 2-20

e “Solid Color” on page 2-28

Multibody Systems

® “Assembling a Multibody Model” on page 3-2
* “Modeling Joints” on page 3-8

® “Modeling Gear Constraints” on page 3-15

¢ “Identifying Assembly Issues” on page 3-25
¢ “Model Double Pendulum” on page 3-29

e “Model Four-Bar Linkage” on page 3-37

¢ “Correct Aiming Mechanism Assembly Error” on page 3-48

3 Multibody Systems

Assembling a Multibody Model

In this section...

“Workflow” on page 3-2

“Identify Joint Requirements” on page 3-2
“Connect Rigid Bodies with Joints” on page 3-3
“Specify Joint State Targets” on page 3-4

“Check Assembly” on page 3-5

To model a mechanism or machine, you connect rigid bodies with joints
that constrain their relative degrees of freedom. This process is known as
multibody assembly.

Note Before you can assemble a multibody model, you must create the rigid
body subsystems for that model.

Workflow

Assembling a multibody system involves the following steps:

1 Connect rigid bodies subsystems with joint blocks.
2 Specify joint state targets.
3 Check assembly.

4 Adjust frames and joint state targets if necessary.

Identify Joint Requirements
Each joint block connects precisely two rigid body frames. The type of joint

block determines how the two rigid bodies can move with respect to each
other. Two types of motion are possible:

® Rotation — provided by revolute and spherical joint primitives

e Translation — provided by prismatic joint primitives

Assembling a Multibody Model

=0

Solver Configuration

ik

Mechanis m
Configuration

To identify the correct joint block for your application, see “Modeling Joints”
on page 3-8. The most commonly used joint blocks are Prismatic Joint,
Revolute Joint, and Spherical Joint.

Connect Rigid Bodies with Joints

Drag the rigid body subsystem blocks onto the SimMechanics model. Then,
select and drag the appropriate joint blocks from the Joints library. Connect
the base and follower frames of each joint block to two frames on two
distinct rigid body subsystems. The following figure shows the assembly of
a double-pendulum model.

- wim
T

World Frame

Ele }III = E ElE_» FlH = [

Waorld - Lirk 1 Link1 - Link 2
lirskc 1 lirk 2

Caution Carefully check the position and orientation of the rigid body
frames that you connect to joint blocks. Joint frames that possess either
incorrect position or orientation can cause the model to assemble in an

unexpected configuration.

In severe cases, joint frames cause kinematic conflicts that lead to assembly
failure and simulation errors. Kinematic conflicts due to incorrect joint
frames are more likely in closed kinematic loops such as the four-bar linkage.

3-3

3 Multibody Systems

3-4

Specify Joint State Targets

You can guide model assembly at time t=0. Each joint block provides a State
Targets menu where you can specify the initial position and velocity of each
joint primitive. You can select high or low priority for each joint state target.

During assembly, SimMechanics attempts to meet all specified state targets.
The following rules apply to joint state targets:

e SimMechanics attempts to meet all state target values precisely.

e [f two or more joint state targets are mutually incompatible, SimMechanics
attempts to meet high priority targets precisely, and low priority targets
approximately.

e [f a state target is not met, the Model Report utility identifies the joint
with the unsatisfied state target.

Note Unsatisfied state targets do not cause assembly failure or
simulation errors, but can cause the model to assemble with an unexpected
configuration.

The following figure shows the double-pendulum model with joint state
targets of +15 deg for each revolute joint.

Assembling a Multibody Model

ks

A

Check Assembly

Joints assemble base and follower frames according to a well-defined set of
rules. For example, the Revolute Joint block makes the +Z axes of base and
follower frames coincident in space. If the +Z axes of base and follower frames
are not properly positioned, an unexpected joint configuration can result.

Use Mechanics Explorer to check the base and follower frames of each joint
in a model.

1 In the tree-browser pane of Mechanics Explorer, click the name of each
joint block.

3-5

3 Multibody Systems

Related
Examples

Mechanics Explorer highlights the base and follower frames of the selected
joint in the visualization pane.

2 Check the base and follower frames of the selected joint for an unexpected
position or orientation.

The following figure shows an improperly configured double-pendulum model.
The Z-axis of the top revolute joint, World-Link1, points along the length
axis of the binary link. Since the +Z axis specifies the rotational axis of

the Revolute Joint block, link1 rotates about its length axis, producing
unexpected results during simulation.

i ¢

A

® “Model Double Pendulum” on page 3-29
* “Model Four-Bar Linkage” on page 3-37
e “Correct Aiming Mechanism Assembly Error” on page 3-48

Assembling a Multibody Model

Concepts ® “Identifying Assembly Issues” on page 3-25
® “Modeling Joints” on page 3-8

3 Multibody Systems

Modeling Joints

3-8

In this section...

“Joint Frames” on page 3-9
“Joint Primitives” on page 3-9
“Joint Primitive Composition” on page 3-11

“Assembling Joints” on page 3-12

“Guiding Joint Assembly” on page 3-13

Joints constrain the mechanical degrees of freedom between two connecting
rigid bodies. The primary purpose of joints is to limit motion of a mechanism
or machine so an end effector can move along a specified path. Rigid bodies
can contain the following degrees of freedom:

® Translational — linear displacement of one rigid body frame relative to
another along a common axis.

® Rotational — angular displacement of one rigid body frame relative to
another about a common axis

A free rigid body contains exactly six degrees of freedom: three rotational and
three translational. The free rigid body can translate along any combination
of three mutually orthogonal axes, and rotate about any combination of the
same axes. When you connect two rigid bodies with a joint, you remove
degrees of freedom between the two. Depending on the joint, you can remove
anywhere from zero-six degrees of freedom. A joint that removes all six
degrees of freedom is called Weld joint.

Note The Rigid Transform block is similar to the Weld Joint block. Both
blocks remove all six mechanical degrees of freedom between the two
connecting rigid bodies. However, the Rigid Transform block also allows you
to maintain a specified distance and angle between the two rigid bodies.

Modeling Joints

Joint Frames

The joint block contains two frame ports, B and F. The ports identify the base
and follower frames of a joint, respectively. You connect the base frame port
to one frame on one rigid body, and the follower frame port to another frame
on a second rigid body. Switching the base and follower frames of a joint block
has no effect on model assembly or simulation.

During simulation, joint blocks apply a time-varying transformation to the
follower frame with respect to the base frame. The transformation depends on
dynamic inputs (forces and torques) and the kinematic configuration of the
model. Transformation components include rotation and translation about or
along the joint primitive axes.

Joint Primitives

Each joint block contains a combination of joint primitives — elementary joint
constructs that make up more advanced joints. The joint primitives represent
the simplest joints you can find in SimMechanics. Three joint primitives
exist: prismatic, revolute, and spherical. The following three sections briefly
describe each primitive. The final section lists the primitives that make up
each joint block.

Prismatic

Joint primitive with one translational degree of freedom. The prismatic
primitive allows the joint base and follower frames to translate relative to
each other along a common axis. Joints with two prismatic primitives allow
translation in a 2-D plane that contains the prismatic axes. Joints with three
prismatic primitives allow translation in 3-D space.

The following figure shows a schematic of the prismatic joint primitive.

3-9

3 Multibody Systems

Revolute

Joint primitive with one rotational degree of freedom. The revolute primitive
allows the joint base and follower frames to rotate relative to each other about
a common axis. Joints with three revolute primitives allow rotation in 3-D
space. The frames must each connect to a non-degenerate mass. The following
figure shows a schematic of the revolute joint primitive.

Spherical

Joint primitive with three rotational degrees of freedom. The spherical joint
allows the joint base and follower frames to rotate about three mutually
orthogonal axes.

The Spherical primitive is not a serial combination of revolute primitives.

Such a combination is susceptible to Gimbal lock — an event in which two
revolute axes align, resulting in the loss of one rotational degree of freedom.

3-10

Modeling Joints

The Spherical primitive is not susceptible to Gimbal lock at any time. The
following figure shows a schematic of the spherical joint primitive.

Joint Primitive Composition

Joint primitives are the basic elements of joint blocks. Each joint block can
contain multiple joint primitives. The number and type of joint primitives
that a joint block contains defines the degrees of freedom that joint provides.
The table summarizes the joint primitives and degrees of freedom (DOF) for
each joint block.

Joint Degrees of Freedom Joint Primitives
Block | Rotation | Translation Prismatic | Revolute Spherical
6-DOF 3 3 3 0 1
Joint
Bearing 3 1 1 3 0
Joint
Bushing 3 3 3 3 0
Joint
Cartesian | O 3 3 0 0
Joint
Cylindrical | 1 1 1 1 0
Joint
Pin Slot 1 1 1 1 0
Joint

3-11

3 Multibody Systems

Joint Degrees of Freedom Joint Primitives
Block | Rotation | Translation Prismatic | Revolute Spherical
Gimbal 3 0 0 3 0
Joint
Planar 1 2 2 1 0
Joint
Prismatic | O 1 1 0 0
Joint
Rectangular O 2 2 0 0
Joint
Revolute 1 0 1 0 0
Joint
Spherical | 3 0 0 0 1
Joint
Telescoping| 3 1 1 0 1
Joint
Universal | 2 0 0 2 0
Joint
Weld Joint | O 0 0 0 0

Assembling Joints

During assembly, joint blocks position and orients base and follower frames
according to rules that depend on the joint type. The table summarizes the
position and orientation constraints that each joint primitive imposes on the
base and follower frames of a joint.

3-12

Modeling Joints

Joint primitive Constraint

Prismatic ¢ Aligns base and follower frame
prismatic axes. For example, the
7 Prismatic Primitive aligns the
7 axes of the base and follower
frames.

¢ Holds the remaining base and
follower frame axes parallel to
each other. For example, the Z
Prismatic Primitive keeps the
base and follower frame X and Y
axes parallel to each other.

Revolute ® Aligns base and follower frame
revolute axes. For example, the
Z Revolute Primitive aligns the
7 axes of the base and follower
frames.

* Holds base and follower frame
origins coincident.

Spherical e Holds base and follower frame
origins coincident.

Guiding Joint Assembly

Each joint primitive provides the option to specify a state target: the desired
initial state for that joint primitive. You can specify state targets for the
position and velocity of the joint primitive, both of which can be either
rotational (for revolute and spherical joint primitives), or translational (for
prismatic joint primitives). The value of the state target represents the
relative state of the follower port frame with reference to the base port frame.
For example, when you enter a value for the velocity state target of a joint
block, you specify the velocity of the follower port frame relative to the base
port frame.

It is not always possible to set the initial state of a joint to the specified state

target. This is especially true of closed loops containing state targets specified
for multiple joints. However, during assembly, SimMechanics attempts to

3-13

3 Multibody Systems

satisfy as many state targets as possible, and with a maximum level of
precision. In the event that all state targets cannot be met, SimMechanics
prioritizes state targets according to the priority level you specify. Joints with
a priority level of High (desired) assemble earlier, followed by joints with a
priority level of Low (approximate).

In the event that it is not possible to set all state targets to their exact values,
SimMechanics relaxes the low-priority state targets, and searches for the
best-fit approximate values that still allow assembly. Should assembly still
fail, SimMechanics begins to relax high-priority state targets, searching

for the nearest approximate values that allow for successful assembly. If
assembly fails, check that the model is kinematically valid. Check also that
closed-loop systems do not contain state targets for every joint in the loop,
which by default causes an assembly error.

Related ® “Model Double Pendulum” on page 3-29
Examples ¢ “Model Four-Bar Linkage” on page 3-37
¢ “Correct Aiming Mechanism Assembly Error” on page 3-48

Concepts ¢ “Identifying Assembly Issues” on page 3-25

3-14

Modeling Gear Constraints

Modeling Gear Constraints

In this section...

“Gear Types” on page 3-15

“Featured Examples” on page 3-16

“Inertia, Geometry, and Efficiency” on page 3-16

“Using Gear Blocks” on page 3-16

“Assembling Rigid Bodies with Gear Constraints” on page 3-18
“Common Gear Assembly and Simulation” on page 3-19

“Rack and Pinion Assembly and Simulation” on page 3-22

You can represent gear constraints in a multibody model. To do this,
SimMechanics provides a Gears, Couplings and Drives library. This library
contains Gear blocks that you can use to constrain the motion of two rigid
body frames. The figure shows the gear blocks that the library provides.

ddlsE #3

Common Gear Radk and

Gear Types

The Gears, Couplings and Drives library provides two blocks that you can
represent gear constraints with: Common Gear, and Rack and Pinion. The
table summarizes what you can do with each block.

3-15

3 Multibody Systems

3-16

Block Description

Common Gear Constraint Transmit angular motion from one
rigid body frame to another

Rack and Pinion Constraint Convert angular motion from one
rigid body frame (pinion) to linear
motion of another rigid body frame
(rack)

Featured Examples

SimMechanics provides two featured examples that highlight the use of gear
blocks. The table lists these examples. To open an example model, at the
MATLAB command line, enter the model name, e.g., sm_cardan_gear.

Featured Example Model Name Gear Blocks Model
Contains

Cardan Gear sm_cardan_gear Common Gear

Windshield Wiper sm_windshield wiper | Rack and Pinion

Open the models and examine the blocks for examples of how to connect the
gear blocks and specify their parameters.

Inertia, Geometry, and Efficiency

Each gear block represents a kinematic constraint between two rigid body
frames. This constraint does not account for the effects of inertia or power
transmission losses. It also does not provide gear visualization. If necessary,
consider modeling these effects using other SimMechanics and Simscape
blocks. To represent gear inertia and geometry, use the Solid block.

Using Gear Blocks

To apply a gear constraint between two rigid bodies, connect the base and
follower frames of the gear block to the rigid body frames that you want
to constrain. Then, open the gear block dialog box and specify the gear
parameters. Parameters can include gear dimensions and ratio.

Modeling Gear Constraints

f)=0 |»7

Configuration

<= W g

Featured example sm_cardan_gear illustrates an application of the Common
Gear block. In this model, two Common Gear blocks connect three gear
rigid bodies. Subsystems Planet Gear A, Planet B and Link, and Sun Gear
represent these rigid bodies. One Common Gear block constrains the motion
of subsystem Planet Gear A with respect to subsystem Sun Gear. The other
Common Gear block constrains the motion of subsystem Planet B and Link
with respect to subsystem Planet Gear A. The figure shows the block diagram
of this model.

Sun-Planett

L &)

faui

‘World Frame

Using the Common Gear Block - Cardan G ear Mechanism

This example s hows the Cardan Gesr mechanism that convers rotational metion into reciprocating
linear motion without using linkages or slideways. The mechanism wses three gears - cnesun and
two planet gears. The sun gear is twice &85 large as the planet gears [which are of the same size).
The red pointer on the link traces a straight line as the gears rotate.

So that the three gear subsystems can rotate with respect to each other,

the model includes three Revolute Joint blocks. Each Revolute Joint block
provides one rotational degree of freedom between one gear subsystem and
the gear carrier—a rigid body that holds the three rotating gears. The figure
shows the Mechanics Explorer display of this model.

3-17

3 Multibody Systems

Assembling Rigid Bodies with Gear Constraints

To assemble successfully, a model must satisfy the constraints that a gear
block imposes. These include distance and orientation constraints that are
specific to each block. The table summarize these constraints.

Gear Constraint Description

Frame Distance The model must maintain a fixed
distance between the base and
follower gear frames. The value of
this distance depends on the gear
block that you use.

Frame Orientation The model must orient the base and
follower gear frames according to
rules that are specific to each block.

The rigid body frames that the gear block connects must have the proper
number and type of degrees of freedom. For a Common Gear block, the frames
must have two rotational degrees of freedom with respect to each other. For
a Rack and Pinion block, the frames must have one translational and one

3-18

Modeling Gear Constraints

rotational degree of freedom with respect to each other. You provide these
degrees of freedom using joint blocks.

¢ Use joint blocks with revolute primitives to provide the rotational degrees
of freedom.

e Use joint blocks with prismatic primitives to provide the translational
degrees of freedom.

Common Gear Assembly and Simulation

During assembly, the Common Gear block requires that the base and follower
frame Z axes align. These are the rotation axes of the two gear frames.
Failure to align the Z axes of the two gear frames results in assembly failure
during model update. The figure illustrates the common gear rigid bodies,
frames, and distance constraints.

3-19

3 Multibody Systems

3-20

R_B

d - Centar-to-center Distance ® X Axis
F_B - Base gear pitch circle ® Y Axis
R_F - Follower gear pitch circle || & 7 Axis

Connect the gear rigid bodies to joints possessing one (or more) revolute joint
primitives. The rotational axis of the revolute primitive must align with the Z
axis of the gear frame that it connects to. This ensures that the gear frames
possess a rotational degree of freedom about the correct axis (Z).

Common Gear Types

With the Common Gear block, you can represent internal and external gear
constraints. If the gear constraint is internal, the gear frames rotate in the
same direction. If it is external, the gear frames rotate in opposite directions.
The figure illustrates the two common gear types that you can represent and
their relative rotation senses.

Modeling Gear Constraints

Gear Dimensions

In the block dialog box, you specify the gear dimensions. Depending on the
specification method that you choose, you can specify the center-to-center
distance between gears or the pitch circle radii. During model assembly, the
Common Gear block imposes this distance constraint between the two gear
frames. This ensures that the gear assembles properly or, if issues arise, that
you can correct any assembly issues early on.

You specify the gear relative sizes in the block dialog box. If you select the
Center Distance and Ratio specification method, the gear ratio specifies
which of the two gears is the larger one. If the gear ratio is greater than one,
the follower gear is the larger gear. If the gear ratio is smaller than one, the
base gear is the larger gear.

If you specify an internal gear type, the larger gear is the ring gear. A gear
ratio greater than unity makes the follower gear the ring gear. A gear ratio
smaller than unity makes the base gear the ring gear.

Gear Pitch Circles

The pitch circle of a gear is an imaginary circle that passes through the
contact point between gears. The pitch radius of a gear is the radius of this
imaginary circle. The figure illustrates the pitch circles of two meshing gears
and their pitch radii. These are the gear radii that you enter in the block
dialog box when you select the Pitch Circle Radii specification method.

3-21

3 Multibody Systems

Pitch Circle

d1 - First gear pitch radius
d2 - Second gear pitch radius

Simulation

During simulation, the Common Gear block requires that the model maintain
the proper distance between gear frames. This distance must equal either the
center-to-center distance or the sum of base and follower gear pitch radii that
you specify in the block dialog box. The structure of the model must be such
that the gears maintain this distance between them. Failure to maintain this
distance results in an error during simulation.

In the Cardan Gear example, the Carrier rigid body fixes the distances
between the three gears. As long as these distances match the gear
dimensions that you specify in the block dialog box, the model should simulate
without an issue.

Rack and Pinion Assembly and Simulation

The base frame of the Rack and Pinion block represents the pinion. It can
rotate about its Z axis. The follower frame of the same block represents the
rack. It can translate along its Z axis. During assembly, the Rack and Pinion
block requires that the base and follower frame Z axes be mutually orthogonal.

When the gear is in its zero configuration—a configuration in which the angle
and displacement between base and follower frames are taken as zero—the
follower frame Z axis is also parallel to the base frame X axis, and base and
follower frame Y axes are parallel to each other. The follower frame origin

3-22

Modeling Gear Constraints

lies along the base frame -Y axis, at a distance equal to the base gear pitch
radius. The figure illustrates these constraints.

o

d - Center-to-center Distance o X Axs
R_B - Pinion Radius ® Y Axis
® S Axs

To ensure the rack and pinion can move with respect to each other, you must
connect the rack and pinion rigid bodies to joints blocks. The joint block on
the rack side must have one (or more) prismatic primitives. At least one
primitive axis must align with the Z axis of the follower gear frame. The joint
block on the pinion side must have one (or more) revolute primitives. At least
one revolute axis must align with the Z axis of the base gear frame.

Gear Pitch Circles

The pitch circle of a rack and pinion gear is the imaginary circle that passes
through the contact point between the pinion and the rack. The pitch radius
is the radius of this imaginary circle. The figure illustrates the pitch circle
for a rack and pinion. This is the circle whose radius you enter in the block
dialog box.

3-23

3 Multibody Systems

Simulation

During simulation, the Rack and Pinion block requires that the model
maintain the proper distance between gear frames. The distance between
the base frame origin (pinion) and the follower frame Z axis must equal the
pinion radius. Failure to maintain this distance between gear frames results
in a simulation error.

3-24

Identifying Assembly Issues

Identifying Assembly Issues

In this section...

“Open Model Report” on page 3-25
“Model Report Tabs” on page 3-25

“Status Icons” on page 3-27

Model Report is a SimMechanics tool that provides model assembly status
and parameters. Use Model Report to:

Identify joints and constraints with assembly issues.

Identify joints with unsatisfied state targets.

¢ Compare specified and actual joint state targets.

Obtain relevant statistics for a model

Open Model Report

Model Report is accessible from Mechanics Explorer. To open Model Report:
1 Update or simulate a SimMechanics model.
2 In the Mechanics Explorer menu bar, click Tools > Model Report.

File Explorer Simulation View Window Help

Y| p = @ _\.{‘ m ™A Model Repnrtl}) T/ = | View convention: | £ up (XY Top) -

Mechanics Explorer-untitled x| M Create Video mass ><[MechanicsExplu:urer-sm_fu:uur_har ><]

3 Model Report opens with assembly status and parameters relevant to the
current model.

Model Report Tabs

Model Report contains one header section and three tabs:

¢ Header — Provides model-wide assembly status.

3-25

3 Multibody Systems

3-26

Joints — Provides assembly status and state target values for each joint
block in a model. The following figure shows the Joints tab for example

sm_four_bar.

ﬂ Model Report - sm_four_bar

Assembly status:

Joints:

Constraints:

@]
@]
o

leints | Constraints I Statistics

(=N HoR (=

Joint

Crank_Co..

Base_Cran...
Base_Rock...
Connecto...

Assembled Primitive

@]
@]
Q
o

FRER

Position
Actual Specified Unit
+150 +150 deg
+173.824 deg
+67.6893 deg
-43.8653 -45 deg

Pricrity
High

Low

Status

o

Velocity
Actual Specified Units
-360 -360 deg/s
-179.769 deg/s
-249.628 deg/s
+429.858 deg/s

Priority Status
High Q

Constraints — Provides assembly status for each constraint block in
a model. The following figure shows the Constraints tab for example

sm_four_bar.

Statistics — Provides model-wide statistics. Parameters include number
of joints, constraints, and kinematic degrees of freedom in a model. The
following figure shows the Statistics tab for example sm_four_bar.

Identifying Assembly Issues

ﬂ Model Report - double_pendulum_advlink E'E
Assembly status: o @
Joints: Q
Constraints: Q
Jointsl Constraints| Statistics
Type Value

Mumber of rigidly connected components (excluding ground)
Mumber of jeints (total)

Mumber of explicit tree joints

Mumber of implicit 6-DOF tree joints

Mumber of cut joints

MNumber of constraints

Mumber of tree degrees of freedom

Mumber of position constraint equations (total)

Mumber of position constraint equations (non-redundant)
Mumber of mechanism degrees of freedom (minimum)

Average kinematic loop length

‘

Status Icons

Model Report uses three icons to identify the assembly status of a model,
joint block, or constraint block.

Status Icon Description

Q Assembled without issues. In joint
blocks, the icon indicates state target
was successfully met.

A Assembled with issues. In Joint
blocks, the icon indicates the state
target was approximately met.

o Not assembled. In Joint blocks, the
icon indicates the state target was
not met.

Related e “Model Double Pendulum” on page 3-29
Examples e “Model Four-Bar Linkage” on page 3-37

¢ “Correct Aiming Mechanism Assembly Error” on page 3-48

3-27

3 Multibody Systems

Concepts ® “Visualizing and Inspecting a Model” on page 6-2
® “Identifying Assembly Issues” on page 3-25
® “Modeling Joints” on page 3-8

3-28

Model Double Pendulum

Model Double Pendulum

In this section...

“Model Overview” on page 3-29

“Modeling Approach” on page 3-30

“Build Model” on page 3-30

“Guide Model Assembly” on page 3-32

“Visualize Model and Check Assembly Status” on page 3-32
“Simulate Model” on page 3-35

“Save Model” on page 3-35

Model Overview

The double pendulum is a simple multibody system. It contains two links
and a pivot mount that connect with joints. This system is nonlinear and
does under certain conditions exhibit chaos. In this example, you assemble a
double pendulum using custom blocks for the links and the pivot mount. You
can later use this model to study the chaotic motion of a double pendulum.

7

3-29

3 Multibody Systems

3-30

Before continuing, you must have completed examples “Model Binary Link”
on page 2-57 and “Model Pivot Mount” on page 2-77.

Modeling Approach

To model the double pendulum, you represent each physical component
and constraint using a SimMechanics block. The double pendulum system
contains three rigid bodies—one pivot mount and two binary links— that
connect 1n series through a pair of revolute joints. You represent the pivot
mount and the binary links using the custom library blocks that you created
in previous examples. You represent the two joints using two Revolute Joint
blocks from the Joints library.

Bndi Jaint
o

You can guide model assembly. By specifying joint state targets, you can
instruct SimMechanics to assemble a joint in the configuration you want.
State targets that you can specify include position and velocity, both angular
and linear. At times, a state target may conflict with other state targets, or
even with other kinematic constraints in the model. In these cases, you can
prioritize the most important state targets by assigning them a high priority
level. During assembly, if two targets conflict with each other, SimMechanics
assembles the high priority target first. To specify both state target values
and priority levels, you use the State Targets menu of the joint block dialog
boxes.

Build Model

To model the double pendulum system:

1 Start a new model.

Model Double Pendulum

2 Drag these custom blocks into the model. See the modeling tutorials if you
have not created these custom blocks.

Block Quantity Modeling Tutorial

pivot_mount 1 “Model Pivot Mount”
on page 2-77

binary_link 2 “Model Binary Link”
on page 2-57

3 Drag these blocks into the model.

Block Library Quantity

Revolute Joint SimMechanics > Seconil
Generation (SM
2@G) > Joints

World Frame SimMechanics > Second
Generation (SM
2Gx) > Frames and

Transforms
Mechanism SimMechanics > Second
Configuration Generation (SM

2(G) > Utilities

Solver Configuration Simscape > Utilities | 1

4 Connect and name the blocks as shown in the figure.

3-31

3 Multibody Systems

Mechanism |,)
Configur ation) pivat_mournt binary_link
T,

binary_lirk1
Iy
S W[E Conni Conn2 [Ele :::D] Canni Conn2 [H——] B }E—E{}arr‘ Caonn2 []
e & .l

World Frame Revolute Joint Rewlute Joint1

=0

Sohver
Configuration

Guide Model Assembly

The model is now complete. However, before visualizing and simulating the
model, specify joint state targets to guide model assembly.

1 Double-click the two Revolute Joint blocks.

2 In each block dialog box, click State Targets > Specify Position Target.

3 In the Value fields, enter the following values and press OK.

Block Name Value (deg)
Revolute Joint 30
Revolute Jointl -75

Visualize Model and Check Assembly Status

If the state targets are consistent with each other and with the rest of the
model, SimMechanics will assemble each joint in the specified state. To check
if a state target was met and what it’s actual value is, use the Model Report
tool in Mechanics Explorer after updating the model.

1 With the model window active, press Ctrl+D to update the model.

3-32

Model Double Pendulum

2 In the Mechanics Explorer tool bar, click the isometric view button, @ .

The visualization pane of Mechanics Explorer displays the assembled
double pendulum model using an isometric view.

3-33

3 Multibody Systems

3-34

From the visualization pane, it appears that SimMechanics successfully met
both joint state targets. To confirm, open the Model Report tool:

1 In the Mechanics Explorer menu bar, click Tools > Model Report.
2 In the Joints tab of the Model Report window, check for yellow or red lights.

These lights identify joints with assembly issues. In this example, you
should see none.

3 Under Position, compare the values of Actual and Specified.

These are the actual angle of the joint at time zero, and the specified angle
entered in the joint block dialog box, respectively. A green light in the
Status column indicates that the two values are equal.

Model Double Pendulum

ﬂ Model Report - double_pendulum_medel

Assembly status:
Joints:

Constraints:

O
O
@)

E=N B =

EJDi"tSE Constraintsl Statisticsl

Joint

Revolute_loint
Revolute_Jointl

HAzce..,

@)
o

Position Velocity
Primit...
Actual Specif.. Unit Priority ~ Status Actual Specif.. Units Priority Status
Rz +30 +30 deg High Q +0 deg/s
Rz -75 -75 deg High Q +0 deg/s

Simulate Model

If assembly was successful, you are now ready to simulate the double
pendulum model:

e With model or Mechanics Explorer window active, press Ctrl+T to simulate
the model.

The visualization pane of Mechanics Explorer shows the double pendulum
simulation. When the simulation ends, you can replay it without rerunning
the simulation. You can also adjust playback speed and loop the animation
so that it begins again once it reaches the end. To do this, use the animation
tool bar at the bottom of the visualization pane.

Save Model

For use in subsequent examples, save the model you created as
double_pendulum in a convenient folder.

3-35

3 Multibody Systems

Related ® “Sense Double-Pendulum Motion” on page 4-43
Examples ¢ “Model Four-Bar Linkage” on page 3-37
e “Correct Aiming Mechanism Assembly Error” on page 3-48

Concepts ® “Visualizing and Inspecting a Model” on page 6-2

¢ “Identifying Assembly Issues” on page 3-25
¢ “Modeling Joints” on page 3-8

3-36

Model Four-Bar Linkage

Model Four-Bar Linkage

In this section...

“Model Overview” on page 3-37

“Modeling Approach” on page 3-38

“Build Model” on page 3-39

“Specify Block Parameters” on page 3-43

“Guide Assembly and Visualize Model” on page 3-43
“Simulate Model” on page 3-46

“Save Model” on page 3-46

Model Overview

The four-bar linkage is a planar closed-loop linkage used extensively in
mechanical machinery. This linkage has four coplanar bars that connect
end-to-end with four revolute joints. In this example, you model a four-bar
linkage using the Binary Link and Pivot Mount custom blocks that you created
in previous examples. For an advanced application of the four-bar linkage,
see the bucket actuating mechanism of the Backhoe featured example.

& o

Before continuing, you must complete the following examples:

3-37

../examples_v2/backhoe.html

3 Multibody Systems

3-38

¢ “Model Binary Link” on page 2-57
* “Model Two-Hole Binary Link” on page 2-69
® “Model Pivot Mount” on page 2-77

Modeling Approach

To model the four-bar linkage, you represent each physical component with a
SimMechanics block. The linkage in this example has five rigid bodies—three
binary links and two pivot mounts—that connect in a closed loop through
four revolute joints. Two of the binary links have one peg and one hole. The
third binary link has two holes. The fourth link is implicit: the fixed distance
between the two coplanar pivot mounts represents this link.

You represent the binary links and pivot mounts using the custom library
blocks that you created in previous examples. You represent the four revolute
joints using four Revolute Joint blocks from the SimMechanics Joints library.

Body

Jomnt

Model Four-Bar Linkage

The two pivot mounts connect rigidly to the World frame. For this reason,
the fourth (implicit) link acts as the ground link. Two Rigid Transform blocks
provide the rigid connection between the two pivot mounts and the World
frame. A translation offset in each Rigid Transform block displaces the two
pivot mounts symmetrically along the World frame Y axis.

-2 Lz
| I |

e o

To guide model assembly, you can specify the desired initial state for one or
more joints in the model. To do this, you use the State Targets menu of the
joint blocks. The state targets that you can specify are the joint position and
velocity. These are angular quantities in revolute joints. You can specify state
targets for all but one of the joints in a closed loop.

Build Model

To model the four-bar linkage:

1 Start a new model.

2 Drag these blocks to the model.

Block Library Quantity

Rigid Transform SimMechanics > Framés
and Transforms

World Frame SimMechanics > Framaés
and Transforms

Mechanism SimMechanics > Utilities
Configuration

Solver Configuration Simscape > Utilities | 1

3-39

3 Multibody Systems

3-40

3 Connect and name the blocks as shown in the figure. Be sure to flip the

frame ports of the crank_base_transform block.

Mechanism Sohver
Eonfigur aticn Configuration
—
'Q \-\g 0 f =0
[] []
7 78[5 als ~7%[
P A=

crank_base transform

rocker_base fransform

=

Weorld Frame

4 Drag four Revolute Joint blocks from the SimMechanics Second
Generation (SM2G) > Joints library into the model.

5 Drag these custom blocks into the model. See the modeling tutorials if you
have not created these custom blocks.

Block Quantity Modeling Tutorial

binary_link 2 “Model Binary Link”
on page 2-57

two_hole_binary_link |1 “Model Two-Hole
Binary Link” on page
2-69

pivot_mount 2 “Model Pivot Mount”

on page 2-77

Model Four-Bar Linkage

6 Connect the blocks as shown in the figure, paying close attention to the
port names. Rotate the blocks as needed.

3-41

3 Multibody Systems

ConnZ Conni |5

two_hole binary_link

FE

f Crank-Coupler Revolute Joint Coupler- Rodker Revwolute Joint
=t
o]
o~
[=
[=
o
a
binary_link binary_link1
E
c
(=1
[51
|
S 1
[
f Mechanism)
~ . : Sohver
zﬁl’,‘ BaseCrank Revelut Joirt Cenfigur ation Configuration Base Rodker Revolute Joint
)
'{?‘ \S = fixi=0
pivot_mount pivat_mountl
[} [}
1] Conn2 Conni [o i '/{EE} E5 'f‘k:‘E—E Conni Conn2 [——F
2= 2=
crank_base transform rocker_base fransform
1]
=
— World Frame
brrrd

3-42

Model Four-Bar Linkage

Specify Block Parameters

Specify the binary link dimensions and the spatial relationships between the
pivot_mount blocks and the World frame.

1 In the Rigid Transform block dialog boxes, specify these parameters.

Parameter crank_base_transformrocker_base_transform
Translation > Method Standard Axis Standard Axis
Translation > Axis -Y +Y

Translation > Offset | 0.15 0.15

2 In the binary link block dialog boxes, specify the length parameter.

Binary Link Length (m)
binary_link 0.10
two_hole_binary_link 0.35
binary_link1 0.20

Guide Assembly and Visualize Model

The model is now complete. You can now specify the desired initial state for
one or more joints in the model. In this example, you specify an initial angle
of 30° for the Base-Crank joint. To do this:

1 Double-click the Base-Crank Revolute Joint block.

2 In the block dialog box, expand State Targets and select Position.
3 In Value, enter -30 and press OK.

4 With the model window active, press Ctrl+D.

Mechanics Explorer opens with a static display of the four-bar linkage in
its initial configuration. If the joint state targets that you specified are
valid and compatible, the initial configuration matches those state targets.
The figure shows the static display that you see in Mechanics Explorer
after updating the model.

3-43

3 Multibody Systems

5 In the Mechanics Explorer toolstrip, click the isometric view button fi .

3-44

Model Four-Bar Linkage

You can guide assembly so that the four-bar linkage assembles in an open
configuration instead. To do this, you must specify a position state target for
at least one more joint. You do not have to specify this target precisely. If you
have a general idea of what the target should be, you can enter an approximate
value and select a low priority level for that target. The figure shows the open
initial configuration that results when you specify an additional position state
target of 0 degrees for the Base-Rocker Revolute Joint block.

Closed-loop kinematic chains like the four-bar linkage are especially
vulnerable to assembly issues. Even when the model assembles,
SimMechanics may fail to meet one or more state targets. You can check the
assembly status of the model and of the joints using the Model Report tool:

1 In the Mechanics Explorer menu bar, click Tools > Model Report.
2 Scan the model report for circles that are yellow or red.
These circles identify issues in the assembly or in the joint state targets.

A yellow or red circle in the Position > Status column identifies state
targets that SimMechanics could not satisfy.

3-45

3 Multibody Systems

The figure shows the model report for the four bar linkage in the open
configuration. A green circle indicates that SimMechanics satisfied the
Base-Crank Revolute Joint state target precisely. A yellow circle indicates
that SimMechanics satisfied the Base-Rocker Revolute Joint state target
only approximately.

ﬂ Model Report - four_bar EI@
Assembly status: Q

loints: Q

Constraints: O

EJointsE Constraints I Statistics|

Pasition Welocity
laint Assemnbled Primitive
Actual Specified Unit Priority Status Actual Specified Units Priority Status
Base_Cran... O Rz -30 -30 deg High O +0 deg/s
Base_Rack... @] Rz -5.33164 +0 deg Lo i +0 degfs
Connecto,., o Rz +103.423 deg +0 degfs
Crank_Co... O Rz -78.7548 deg +0 deg/s

&)

Simulate Model

You can now simulate the model. To do this, In the Simulink tool bar, click
the Run button.

Save Model

In a subsequent example, you actuate the four-bar linkage and sense its
motion. So that you add the actuation inputs and motion sensors to this
model, save it as four_bar_linkage in a convenient folder. Then, see example
“Prescribe Four-Bar Actuation Torque” on page 4-50.

Related ¢ “Model Double Pendulum” on page 3-29
Exqmples ® “Correct Aiming Mechanism Assembly Error” on page 3-48

3-46

Model Four-Bar Linkage

Concepts ® “Visualizing and Inspecting a Model” on page 6-2
® “Identifying Assembly Issues” on page 3-25
® “Modeling Joints” on page 3-8

3-47

3 Multibody Systems

Correct Aiming Mechanism Assembly Error

In this section...

“Model Overview” on page 3-48

“Explore Model” on page 3-49

“Update Model” on page 3-52

“Troubleshoot Assembly Error” on page 3-52
“Correct Assembly Error” on page 3-55
“Simulate Model” on page 3-55

“Save Model” on page 3-57

Model Overview

In closed-loop systems, joints and constraints must be mutually compatible.
For example, in a four-bar linkage, all revolute joints must spin about parallel
axes. If one of the joints spins about a different axis, assembly fails and the
model does not simulate.

To simplify the troubleshooting process, SimMechanics provides Model
Report. This tool helps you pinpoint the joints and constraints that caused
assembly to fail. Once you identify these joints and constraints, you can then
determine which of their frames to correct—and how to correct them.

In this example, you identify the assembly error source in an aiming
mechanism model using Model Report. Then, using Mechanics

Explorer, you determine how to correct that error source. The
sm_dcrankaim_assembly with_error featured example provides the basis
for this example.

3-48

Correct Aiming Mechanism Assembly Error

© 2

Explore Model

To open the model, at the MATLAB command line, enter
sm_dcrankaim_assembly_with_error. The model opens in a new window.

The figure shows a schematic of the system that the model represents. This
system contains four rigid bodies, labeled A-D. These rigid bodies connect in a
closed loop via four joints, labeled Ri, Ro, Rg, and Pg. When connected to each
other, these components form a system with one degree of freedom.

3-49

3 Multibody Systems

3-50

The model represents the components of this system using blocks. Each block
represents a physical component. A World Frame block provides the ultimate
reference frame in the model. The figure shows the block diagram that the
model uses to represent the double-crank aiming mechanism.

Correct Aiming Mechanism Assembly Error

Rg
Rigid Body A Rigid Body C
Mechanism Assembly
This model shows the sssembly ot the mechamsm trom the individusl rigid bodies . Joints .
“’{ are Lsed to establish relations hips between the frames attached to the rigid bodies. Rigid Body B
@) JRo
P Rigid Body D
: & }
= B &
gd -
World
Frame
Soler fix) = 0

Schematic of Full Mechansm

To represent the rigid bodies, the model contains four subsystem blocks,
labeled Rigid Body A-D. Each subsystem contains one Solid block and
multiple Rigid Transform blocks. The Solid block provides geometry, inertia,
and color to the rigid body subsystem. The Rigid Transform blocks provide
the frames that you connect the joints to. A Reference Frame block identifies
the ultimate reference frame in the subsystem block.

The model labels the rigid body subsystem blocks Rigid Body A-D. To examine
the block diagram for a rigid body subsystem, right-click the subsystem block
and select Mask > Look Under Mask. The figure shows the block diagram
for Rigid Body A.

3-51

3 Multibody Systems

3-52

Feference Frame

Fad 3 /h] |-__L Eli_ IA:: Fac
ﬂ i

Hole Frame Slide Frame
Components that make up rigid body A

"

Transform Transform

To represent the joints, the model contains four joint blocks. Three joints
provide one rotational degree of freedom between a pair of rigid bodies. You
represent each of these joints with a Revolute Joint block. A fourth joint
provides one translational degree of freedom between a pair of rigid bodies.
You represent this joint with a Prismatic Joint block. The model labels the
revolute joint blocks Ro, Rg, and Ri, and the prismatic joint block Pg.

Update Model

As the model name suggests, this model contains an error. The error prevents
the model from assembling successfully, which causes simulation to fail. To
update the model and investigate the assembly error:

¢ On the Simulink menu bar, select Simulation > Update Diagram.

Mechanics Explorer opens with a static display of your model in its initial
state. Because the model contains an assembly error, SimMechanics issues
an error message. Ignore that message for now.

Troubleshoot Assembly Error

The Mechanics Explorer utility contains a Model Report tool which identifies
the status of joints and constraints. Use the Model Report utility to determine
if joints and constraints have successfully assembled. The report also provides
information on the configuration of joints and constraints. To see the report:

Correct Aiming Mechanism Assembly Error

® On the Mechanics Explorer menu bar, select Tools > Model Report.

The model report opens in a new window. The top section of this window
identifies the assembly status of the model as a whole. Because assembly
failed, the assembly status for this model is Unassembled. Because the
source of the assembly error is a joint block, the assembly status for joints is
“Unable to assembly all joints”.

ﬂ Model Report - sm_dcrankaim_assembly_with_error EI@

@ Unassembled
@ Unable to asserble all Joints

Assembly status:
Joints:

Constraints:

‘Joints! Constraintsl Statistics|

Position Position Velocity
Joint Assernbled Primitive
Actual Specified Unit Pricrity Status Actual Specified Units Pricrity Status
Pg a Pz MN/A m N/A m/s
Rg @] Rz -0.00442103 deg +0 deg/s
Ri @] Rz +0.00773987 deg +0 deg/s
Re @] Rz +0.00331709 deg +0 deg/s

To identify the joint block that caused assembly fail, examine the model
report Joints tab. A red square identifies the problematic joint—Pg. This
joint did not assemble, and the model report provides neither position nor
velocity information for that joint.

Identifying Error Root Cause

The error message that SimMechanics issued during model update identifies
position violation as the root cause of assembly failure. This suggests that
the frames which joint Pg connects to are improperly aligned. To confirm this
hypothesis, check the orientation of these frames in Mechanics Explorer.

1 In the Mechanics Explorer tree view pane, click joint Pg.

3-53

3 Multibody Systems

4 emn_dcrankaim_assernbly_with_emor
- Pigid Body A

H-"5 Rigid_Body_B

H-"g Rigid_Body C

H-"5 Rigid_Body D

il Mech anism_Configuration
8-k World_Frame

o4 A

H- 4 Rg

- Ri

H- 2 Ro

il Connection Frames

2 In the Mechanics Explorer visualization pane, examine the position and
orientation of the highlighted frames. These are the frames that appear in
turquoise blue.

The two frames are offset along the Z axis. Because joint Pg provides a
translational degree of freedom along the Z axis, this offset is valid. However,
the follower frame has a different orientation than the base frame. It contains
a rotation angle of 90 degrees about the common Z axis with respect to the
base frame. Because joint Pg provides no rotational degrees of freedom, this
rotation angle is invalid. This angle prevents the two joint frames from
aligning correctly, causing assembly to fail.

3-54

Correct Aiming Mechanism Assembly Error

Correct Assembly Error

To correct the assembly error, you must change the orientation of either base
or follower joint frames. In this example, you change the orientation of the
follower frame so that the model can assemble successfully. To change the
orientation of this frame:

1 Right-click the Rigid Body C subsystem block and select Mask > Look
Under Mask.

2 Double-click the Slide Frame Transform block and select the new
parameter values that the table provides.

Parameter New Value
Rotation > Pair 2 > Follower +X
Rotation > Pair 2 > Base +Y

3 Click OK.

Simulate Model

You can now simulate the model. On the Simulink menu bar, select
Simulation > Run. Mechanics Explorer opens with a dynamic display of
your model. The figure shows this display. Rotate, pan, and zoom to explore.

3-55

3 Multibody Systems

You can use the Model Report tool to verify the assembly status. To do this,
on the Mechanics Explorer menu bar, select Tools > Model Report. The
model report opens in a new window. Check that the assembly status icon
for the model and its joints is a green square. The green square indicates
that assembly has been successful.

3-56

Correct Aiming Mechanism Assembly Error

Assembly status:
Joints:

Constraints:

o
@]
o

ﬂ Model Report - sm_dcrankaim_assembly_with_error EI@

‘Joints! Constraintsl Statistics|

Position Position Velocity
Joint Assernbled Primitive
Actual Specified Unit Pricrity Status Actual Specified Units Pricrity Status
Pg O Pz +0.3 m +0 m/s
Rg @] Rz +0 deg +0 deg/s
Ri o Rz +0 deg +0 deg/s
Ro O Rz +0 deg +0 deg/s

Related
Examples

Concepts

Save Model

Save the model as aiming_mechanism in a convenient folder. In a subsequent
example, you prescribe a joint trajectory using this model.

¢ “Model Double Pendulum” on page 3-29
¢ “Model Four-Bar Linkage” on page 3-37

e “Visualizing and Inspecting a Model” on page 6-2
¢ “Identifying Assembly Issues” on page 3-25
“Modeling Joints” on page 3-8

3-57

3 Multibody Systems

3-58

Internal Mechanics,
Actuation and Sensing

® “Forces and Torques” on page 4-2

® “Joint Actuation” on page 4-7

e “Specify Motion Input Derivatives” on page 4-15

* “Joint Motion Actuation Restrictions” on page 4-16
® “Actuating and Sensing with Physical Signals” on page 4-18
® “Sensing Spatial Relationships” on page 4-21

* “Rotation Measurements” on page 4-26

* “Translation Measurements” on page 4-31

® “Measurement Frames” on page 4-40

® “Sense Double-Pendulum Motion” on page 4-43

® “Prescribe Four-Bar Actuation Torque” on page 4-50
® “Prescribe Four-Bar Motion” on page 4-66

® “Prescribe Two-Bar Motion” on page 4-78

4 inierndl Mechanics, Actuation and Sensing

4-2

Forces and Torques

In this section...

“Force and Torque Blocks” on page 4-2
“Actuating Rigid Bodies” on page 4-2

Force and Torque Blocks

You can apply different forces and torques to a model. The table summarizes
the different forces and torques that you can represent using SimMechanics
blocks. For detailed information about these blocks, see the block reference
pages.

Block Description

External Force and Torque General force and torque arising
outside a model

Internal Force General force acting between two
rigid bodies in a model

Spring and Damper Force Internal force, acting between two
rigid bodies in a model, that accounts
for energy storage and dissipation in
your model

Inverse Square Law Force Internal force, acting between two
rigid bodies in a model, with a 1/R*2
dependence. Examples include
gravity and Coulomb forces.

Actuating Rigid Bodies

You can actuate a rigid body directly using blocks from the Forces and
Torques library. Use the External Force and Torque block to represent an
actuation input that arises outside your model. Use the remaining blocks to
represent forces that are internal to your model.

The figure illustrates external and internal forces acting on a mechanical
system. An external force provides the actuation input to the system. This

Forces and Torques

can be a constant or a general time-dependent input. A spring and damper
force acting between the two bodies in the system accounts for energy storage
and dissipation. You represent the actuation input using the External Force
and Torque block. You represent the internal spring and damper force using
the Spring and Damper Force block.

System

Reprasant With Block

External External Force and Torgue

Acluation Force IE

e =Tl d ner Force
. Interma .':.i:-.lrlrl':.l znd ._'|F| i g ang Lampear =orce

Damper Force E
L}z L]

—

The Forces and Torques blocks contain frame ports. These ports identify the
rigid body frames the forces/torques act on. If the block represents an internal
force, the block contains two frame ports. Connect these ports to the two rigid
bodies the force/torque acts on. If the block represents an external force or
torque, the block contains one frame port. Connect this port to the rigid body
frame the external force or torque acts on.

The frame origin identifies the point of application for a force or torque.
The frame axes identify the directions of the X, Y, and Z force/torque vector
components that you specify. Changing the frame position changes also the
force/torque application point. Likewise, changing the frame orientation
changes also the force/torque direction.

The figure shows three external forces that you can apply to the rocker link

of a four-bar mechanism—F1, F2, and F3. Forces F1 and F3 act at the ends
of the link, while force F2 acts at its mass center.

4-3

4 inierndl Mechanics, Actuation and Sensing

4-4

To represent one of these forces in a SimMechanics model, you first define the
frame to apply that force to. Example “Represent Binary Link Frame Tree”
on page 1-36 shows you how to do this. Then, in the block diagram for your
model, connect the frame port of an External Force and Torque block to the
frame entity that represents that frame—frame port, line, or node. For more
information, see “Representing Frames” on page 1-7.

Finally, in the block dialog box, select the force component(s) that you want to
specify. For example, to specify a force acting along the -Y axis of the frame it
connects to, select Force > Force (Y). Then, use the physical signal port that
the block exposes to input the value of that force component. That value is
negative for a force acting along the -Y axis.

The figure shows the modified block diagram of a four-bar model that is
present in your SimMechanics installation. You can open the original model
by typing sm_four_bar at the MATLAB command line.

Forces and Torques

S~
i
L3

il

[H

%III
O%

|

=

=0

.
(2]

External Force
and Torque
Simulink-PS5 Signal Builder
Converter
]
o

S|
=
-
H
=
| }_.
-

L

.

"\ -
e

The rectangular frame in the image highlights the blocks that you can use to
apply an external force. The frame port that the External Force and Torque

block connects to represents the binary link mass center. The block diagram
of the binary link subsystem provides this frame. The figure shows the block
diagram.

4 inierndl Mechanics, Actuation and Sensing

4-6

Mass Center
O
Frame

R = : 543 : ,@

Left Hole 2= Y |J_r| Right Hole:
Frame Left il Right Frame
Transform . Transform
Left End Cap ' t:: ' Right End Cap
In the External Force and Torque block, physical signal port fy identifies
the force component that the block represents—in this case, a force in the Y
direction of the frame that the block connects to.
Related ® “Prescribe Four-Bar Actuation Torque” on page 4-50
Examples
Concepts e “Joint Actuation” on page 4-7

e “Actuating and Sensing with Physical Signals” on page 4-18
e “Representing Frames” on page 1-7

Joint Actuation

Joint Actuation

In this section...

“Actuation Modes” on page 4-7

“Motion Input” on page 4-10

“Input Handling” on page 4-12
“Assembly and Simulation” on page 4-13

Actuation Modes

Joint blocks provide two actuation parameters. These parameters,
Force/Torque and Motion, govern how the joint behaves during simulation.
Depending on the parameter settings you select, a joint block can accept
either actuation parameter as input or automatically compute its value
during simulation.

An additional setting (None) allows you to set actuation force/torque directly
to zero. The joint primitive is free to move during simulation, but it has no
actuator input. Motion is due indirectly to forces and torques acting elsewhere
in the model, or directly to velocity state targets.

= 2 Revobis Pimte %)
‘State Targets [+ State Targets

Intemal Mechanics %! Internal Mechanics
= Actuation 1= Actuation
q Autorpatically Computed - Torque | Automatically Computed -
Motion Mone b Automatically Computed -
Sensing Provided by Input i# Sensing Provided by Input

Like all joint block parameters, you select the actuation parameter settings
for each joint primitive separately. Different joint primitives in the same
block need not share the same actuation settings. Using a Pin Slot Joint
block, for example, you can provide motion input and have actuation torque
automatically computed for the Z Revolute Primitive (Rz), while having

4-7

4 interndl Mechanics, Actuation and Sensing

motion automatically computed with no actuation force for the X Prismatic
Primitive (Px).

= X Prismatic Primitive (Px)

Mone
Automatically Computed

Automatically Computed
Provided by Input

By combining different Force/Torque and Motion actuation settings, you
can achieve different joint actuation modes. Forward dynamics and inverse
dynamics modes are two common examples. You actuate a joint primitive in
forward dynamics mode by providing actuation force/torque as input while
having motion automatically computed. Conversely, you actuate a joint
primitive in inverse dynamics mode by providing motion as input while
having actuation force/torque automatically computed.

Other joint actuation modes, including fully arbitrary and fully specified
modes, are possible. The table summarizes the different actuation modes that
you can obtain by manipulating the actuation parameter settings.

Joint Actuation

Actuator Motion

Provided by Input Automatically Computed

Unactuated Maotion Pagsive
@O
3
= .
=) z
EQE
o N =
I.E = Fully Specified Forward Dynamics
i
=
oz
H G
<L
ér: Inverse Dynamics Fully Arbitrary
2

Joint Actuation Modes

More generally, thinking of joint actuation in terms of the specified or
calculated quantities—i.e., force/torque and motion—provides a more
practical modeling approach. You may not always know the appropriate mode
for a joint but, having planned the model beforehand, you should always
know the answers to two questions:

¢ Is the joint primitive mechanically actuated?

¢ Is the desired trajectory of the joint primitive known?

4-9

4 inierndl Mechanics, Actuation and Sensing

By selecting the joint actuation settings based on the answers to these
questions, you can ensure that each joint is properly set for your application.
The figure shows the proper settings depending on your answers.

Actuation — Force/Torgque

| Is the joint primitive mechanically actuated? |

Ma. |—b| Select None. |
Yes.

—hl Is the joint primitive actuation force/torque known? |

Mo, |—.-| Select Automatically Computed. |
Yes, |—.-| Select provided by Input. |

Actuation — Motion

| Is the desired trajectory of the joint primitive known 7 |

Mo, |—’| Select Automatically Complted. |
Yes. |—b| Select Provided by Input. |

Selecting Joint Primitive Actuation Settings

Motion Input

The motion input of a joint primitive is a timeseries object specifying that
primitive’s trajectory. For a prismatic primitive, that trajectory is the
position coordinate along the primitive axis, given as a function of time. The
coordinate provides the position of the follower frame origin with respect to
the base frame origin. The primitive axis is resolved in the base frame.

4-10

Joint Actuation

For a revolute primitive, the trajectory is the angle about the primitive axis,
given as a function of time. This angle provides the rotation of the follower
frame with respect to the base frame about the primitive axis. The axis is
resolved in the base frame.

Spherical joint primitives provide no motion actuation options. You can
specify actuation torque for these primitives, but you cannot prescribe their
trajectories. Those trajectories are always automatically computed from the
model dynamics during simulation.

Zero Motion Prescription

Unlike Actuation > Force/Torque, the Actuation > Motion parameter
provides no zero input option, corresponding to a fixed joint primitive during
simulation. You can, however, prescribe zero motion the same way you
prescribe all other types of motion: using Simscape and Simulink blocks.

In SimMechanics, motion input signals are position-centric. You specify the
joint primitive position and, if filtered to the second-order, the Simulink-PS
Converter block smooths the signal while providing its two time-derivatives
automatically. This behavior makes zero motion prescription straightforward:
just provide a constant signal to the motion actuation input port of the joint
primitive and simulate.

The figure shows an example of zero-motion prescription. A Simulink
Constant block provides a constant position value. A Simulink-PS Converter
block converts this Simulink signal into a Simscape signal compatible with the
motion actuation input port of the Base-Crank Revolute Joint block. Assuming
that assembly and simulation are successful, this joint will maintain a fixed
angle of 30 degrees, corresponding to the value set in the Simulink Constant
block and the units set in the Simulink-PS Converter block.

4-11

4 inierndl Mechanics, Actuation and Sensing

4-12

=) F—L]
Crank
Liri
= |
L
f Base-Crank
"/ Revolute
-
30 » 5 FS ‘T
= | o -
Censtant Simulink-FPS =
Converter
Crank Side
Base

Input Handling

When prescribing a joint primitive trajectory, it is practical to specify a single
input, the position, and filter than input using a Simulink-PS Converter
block. This filter, which must of second-order, automatically provides the
two time derivatives of the motion input. Because it also smooths the input
signal, the filter can help prevent simulation issues due to sudden changes or
discontinuities, such as those present when using a Simulink Step block.

Filtering smooths the input signal over a time scale of the order of the input
filtering time constant. The larger the time constant, the greater the signal
smoothing, and the more distorted the signal tends to become. The smaller
the time constant, the closer the filtered signal is to the input signal, but also
the greater the model stiffness—and, hence, the slower the simulation.

As a guideline, the input filtering time constant should be only as small as the
smallest relevant time scale in a model. By default, its value is 0.001 s. While

Joint Actuation

appropriate for many models, this value is often too small for SimMechanics
models. For faster simulation, start with a value of 0.01 s. Decrease this
value for greater accuracy.

If you know the two time derivatives of the motion input signal, you can
specify them directly. This approach is most convenient for simple trajectories
with simple derivatives. You must, however, ensure that the two derivative
signals are compatible with the position signal. If they are not, even when
simulation proceeds, results may be inaccurate.

Assembly and Simulation

SimMechanics joints with motion inputs start simulation (Ctrl+T) at the
initial position dictated by the input signal. This initial position may differ
from the assembled state, which is governed by an assembly algorithm
optimized to meet the joint state targets, if any. Even in the absence of joint
state targets, the assembled state may differ from that at simulation time
Zero.

Note You obtain the assembled state each time you update the block
diagram, e.g., by pressing Ctrl+D. You obtain the initial simulation state
each time you run the simulation, e.g., by pressing Ctrl+T, and pausing at
time zero.

Due to the discrepancy between the two states, Model Report provides
accurate initial state data only for models lacking motion inputs. For models
possessing motion inputs, that data is accurate only when the initial position
prescribed by the motion input signal exactly matches the initial position
prescribed in the joint state targets.

Similarly, Mechanics Explorer displays the initial joint states accurately only
for models lacking motion inputs. As it transitions from the assembled state
to the initial simulation state, Mechanics Explorer may show a sudden jump
if a model contains motion inputs that are incompatible with the joint state
targets. You can eliminate the sudden change by making the initial position
prescribed by joint motion inputs equal to the initial position prescribed by
the joint state targets.

4-13

4 interndl Mechanics, Actuation and Sensing

IOIOIO) |

PO @ —

Tme

Related ® “Prescribe Two-Bar Motion” on page 4-78
Examples ® “Prescribe Four-Bar Motion” on page 4-66
e “Specify Motion Input Derivatives” on page 4-15

4-14

Specify Motion Input Derivatives

Specify Motion Input Derivatives

If filtering the input signal using the Simulink-PS Converter block, you need
only to provide the position signal. The block automatically computes the

derivatives. You must, however, select second-order filtering in the block
dialog box:

1 Open the dialog box of the Simulink-PS Converter block and click Input
Handling.

2 In Filtering and derivatives, select Filter input.
3 In Input filtering order, select Second-order filtering.
4 In Input filtering time constant (in seconds), enter the characteristic

time over which filter smooths the signal. A good starting value is 0.01
seconds.

If providing the input derivatives directly, you must first compute those
derivatives. Then, using the Simulink-PS Converter block, you can provide
them to the target joint block. To specify the input derivatives directly:

1 Open the Simulink-PS Converter block receiving the input signal and click
the Input Handling tab.

2 In Filtering and derivatives, select Provide input derivative(s).

3 To specify both derivatives, in Input derivatives, select Provide first
and second derivatives.

The block displays two additional physical signal ports, one for each

derivative.
Related ® “Prescribe Two-Bar Motion” on page 4-78
Exqmples e “Prescribe Four-Bar Motion” on page 4-66
Concepts ® “Joint Actuation” on page 4-7

4-15

4 inierndl Mechanics, Actuation and Sensing

4-16

Joint Motion Actuation Restrictions

In this section...

“Closed Loop Restriction” on page 4-16

“Motion Actuation Not Available in Spherical Primitives” on page 4-16
“Redundant Actuation Mode Not Supported” on page 4-17

“Model Report and Mechanics Explorer Restrictions” on page 4-17

“Motion-Controlled DOF Restriction” on page 4-17

Closed Loop Restriction

Each closed kinematic loop must contain at least one joint block without
motion inputs or computed actuation force/torque. This condition applies
even if one of the joints acts as a virtual joint, e.g., the bushing joint in the
“Prescribe Two-Bar Motion” on page 4-78 example. The joint without motion
inputs or automatically computed actuation forces/torques can still accept
actuation forces/torques from input.

In models not meeting this condition, you can replace a rigid connection line
between two Solid blocks with a Weld Joint block. Since the Weld Joint
block represents a rigid connection, this approach leaves the model dynamics
unchanged. The advantage of this approach lies in its ability to satisfy the
SimMechanics closed-loop requirement without altering model dynamics.

Motion Actuation Not Available in Spherical
Primitives

Spherical joint primitives provide no motion actuation parameters. You can
prescribe the actuation torque acting on the spherical primitive, but not

its desired trajectory. For models requiring motion prescription for three
concurrent rotational degrees of freedom, use joint blocks with three revolute
primitives instead. These blocks include Gimbal Joint, Bearing Joint, and
Bushing Joint.

Joint Motion Actuation Restrictions

Related
Examples

Concepts

Redundant Actuation Mode Not Supported

Redundant actuation, in which the end effector trajectory of a
high-degree-of-freedom linkage is prescribed, is not allowed. Such linkages
possess more degrees of freedom than are necessary to uniquely position the
end effector and, as such, have no single solution. Models that have more
degrees of freedom with automatically computed actuation forces/torques
than with prescribed motion inputs cause simulation errors.

Model Report and Mechanics Explorer Restrictions

In models with motion input, the assembled state achieved by updating the
block diagram (Ctrl+D) does not generally match the initial simulation state
at time zero (Ctrl+T). This discrepancy is visible in Mechanics Explorer,
where it can cause a sudden state change at time zero when simulating a
model after updating it. It is also reflected in Model Report, whose initial
state data does not generally apply to the simulation time zero when a model
has motion inputs.

Motion-Controlled DOF Restriction

The number of degrees of freedom with prescribed trajectories must equal the
number of degrees of freedom with automatically computed force or torque. In
models not meeting this condition, simulation fails with an error.

¢ “Prescribe Two-Bar Motion” on page 4-78
e “Prescribe Four-Bar Motion” on page 4-66
e “Specify Motion Input Derivatives” on page 4-15

e “Joint Actuation” on page 4-7

4-17

4 inierndl Mechanics, Actuation and Sensing

Actuating and Sensing with Physical Signals

In this section...

“Exposing Physical Signal Ports” on page 4-18
“Providing Actuation Signals” on page 4-18

“Extracting Sensing Signals” on page 4-19

Some SimMechanics blocks provide physical signal ports for actuation input
or sensing output. These ports accept only Simscape physical signals. If you
wish to connect these ports to Simulink blocks, you must use the Simscape
converter blocks. The table summarizes the converter blocks that Simscape
provides. You can find both blocks in the Simscape Utilities library.

Block Summary

PS-Simulink Converter Convert Simscape physical signal
into Simulink signal

Simulink-PS Converter Convert Simulink signal into
Simscape physical signal

Exposing Physical Signal Ports

In SimMechanics, most physical signal ports are hidden by default. To expose
them, you must select an actuation input or sensing output from the block
dialog box. Blocks that provide physical signal ports include certain Forces
and Torques blocks as well as Joint blocks. Each port has a unique label
that identifies the actuation/sensing parameter. For the ports that a block
provides, see the reference page for that block.

Providing Actuation Signals

To provide an actuation signal based on Simulink blocks, you use the
Simulink-PS Converter block:

1 Build the Simulink block diagram to represent the actuation signal

This diagram can be as simple as a single block.

4-18

Actuating and Sensing with Physical Signals

2 Connect the Simulink signal from the block diagram to the input port of a
Simulink-PS Converter block.

3 Connect the output port of the Simulink-PS Converter block to the input
port of the block that you want to provide the actuation signal to.

In the figure, the connection line that connects to the input port of the
Simulink-PS Converter block represents the original Simulink signal. The
connection line that connects to the output port of the same block represents
the converted physical signal. This is the signal that you must connect to the
actuation ports in SimMechanics blocks.

Qriginal

Simulink Signal

Exterrml Fooe
B Toroues

L)

l : -
Simulink-PS Signal Builder
Converter

Converted

Physical Signal

Extracting Sensing Signals

To connect the sensing signal of a SimMechanics block to a Simulink block,
you use the PS-Simulink Converter block:

1 Connect the SimMechanics sensing port to the input port of a PS-Simulink
Converter block.

2 Connect the output port of the PS-Simulink Converter block to the
Simulink block of your choice.

The figure shows how you can connect a SimMechanics sensing signal to a
Simulink Scope block.

4-19

4 inierndl Mechanics, Actuation and Sensing

Criginal

Physical Signal

P Smubink

F
4%

Comverer
3 Converted
Simulink Signal
Related e “Prescribe Four-Bar Actuation Torque” on page 4-50
Examples
Concepts ® “Forces and Torques” on page 4-2

* “Representing Frames” on page 1-7

4-20

Sensing Spatial Relationships

Sensing Spatial Relationships

In this section...

“Sensing Spatial Relationship Between Joint Frames” on page 4-21

“Sensing Spatial Relationship Between Arbitrary Frames” on page 4-23

In SimMechanics, you can sense the spatial relationship between two frames
using two types of blocks:

¢ Transform Sensor — Sense the spatial relationship between any two
frames in a model. Parameters that you can sense with this block include
position, velocity, and acceleration of the linear and angular types.
This block provides the most extensive motion sensing capability in the
SimMechanics libraries.

¢ Joint blocks — Sense the spatial relationship between the base and
follower frames of a Joint block. Parameters that you can sense with a
Joint block include the position and its first two time derivatives (velocity
and acceleration) for each joint primitive.

These blocks output a physical signal for each measurement that you specify.
You can use the sensing output of these blocks for analysis or as input to
a control system in a model.

Sensing Spatial Relationship Between Joint Frames

To sense the spatial relationship between the base and follower frames of a
Joint block, you can use the Joint block itself. For each joint primitive, the
dialog box provides a Sensing menu with basic parameters that you can
measure. These parameters include the position, velocity, and acceleration of
the follower frame with respect to the base frame. If the sensing menu of the
dialog box does not provide the parameters that you wish to sense, use the
Transform Sensor block instead. See “Sensing Spatial Relationship Between
Arbitrary Frames” on page 4-23.

The sensing capability of a joint block is limited to the base and follower
frames of that joint block. Every measurement provides the value of a
parameter for the joint follower frame with respect to the joint base frame.
If sensing the spatial relationship with a spherical joint primitive, you can

4-21

4 inierndl Mechanics, Actuation and Sensing

also select the frame to resolve the measurement in. To sense the spatial
relationship between any other two frames, use the Transform Sensor block
instead.

If the joint primitive is of the revolute or spherical type, the parameters
correspond to the rotation angle, angular velocity, and angular acceleration,
respectively. If the joint primitive is of the prismatic type, the parameters
correspond to the offset distance, linear velocity, and linear acceleration,
respectively.

Regardless of joint primitive type, each parameter that you select applies only
to the joint primitive it belongs to. For example, selecting Position in the Z
Revolute Primitive (Rz) > Sensing menu exposes a physical signal port
that outputs the rotation angle of the follower frame with respect to the base
frame about the base frame Z axis.

The table lists the port label for each parameter that you can sense using a
joint block. The first column of the table identifies the parameters that you
can select. The remaining three columns identify the port labels for the three
joint primitive menus that the dialog box can contain: Spherical, Revolute,
and Prismatic.

Note For parameter descriptions, see the reference pages for Spherical Joint,
Revolute Joint, and Prismatic Joint blocks.

Parameter Spherical Revolute Prismatic
Position Q q p

Velocity \'4 \'4 v

Velocity (X/Y/Z) wWx/Wylwz N/A N/A
Acceleration b b a
Acceleration bx/by/bz N/A N/A
X/Y/Z)

A joint block can contain multiple revolute and prismatic joint primitives. For
blocks with multiple primitives of the same type, the port labels include an

4-22

Sensing Spatial Relationships

extra letter identifying the joint primitive axis. For example, the Position
port label for the Z prismatic primitive of a Cartesian Joint block is pz.

Select Joint Parameters To Sense
To select the spatial relationship parameters that you wish to sense:

1 Open the dialog box for the joint block to sense the spatial relationship
across.

2 In the Sensing menu of the block dialog box, select the parameters to sense.

The block exposes one physical signal port for each parameter that you select.
The label of each port identifies the parameter that port outputs.

Sensing Spatial Relationship Between Arbitrary
Frames

To sense the spatial relationship between two arbitrary frames in a model, you
use the Transform Sensor block. The dialog box of this block provides a set of
menus that you can use to select the parameters to sense. These parameters
include position, velocity, and acceleration of the linear and angular types.

Every measurement provides the value of a parameter for the follower frame
with respect to the base frame, resolved in the measurement frame that you
choose. You can connect the base and follower frame ports of the Transform
Sensor block to any two frames in a model. To measure a parameter for a
different frame, connect the follower frame port to the frame line or port that
identifies that frame. Likewise, to measure a parameter for the same frame
but with respect to a different frame, connect the base frame port to the frame
line or port that identifies that frame. Finally, to resolve a measurement in
a different frame, select a different measurement frame in the block dialog
box. For more information about measurement frames, see “Measurement
Frames” on page 4-40. For more information about frame lines and ports, see
“Representing Frames” on page 1-7.

Selecting a parameter from the block dialog box exposes the corresponding
physical signal port in the block. Use this port to output the measurement
for that parameter. To identify the port associated with each parameter,
each port uses a unique label.

4-23

4 inierndl Mechanics, Actuation and Sensing

4-24

The table lists the port labels for each angular parameter that you can sense.
The first column of the table identifies the parameters that you can select.
The remaining three columns identify the port labels for the three angular
parameter menus in the dialog box: Rotation, Angular Velocity, and
Angular Acceleration. Certain parameters belong to one menu but not to
others. N/A identifies the parameters that don’t belong to a given menu—e.g.
Angle, which 1s absent from the Angular Velocity.

Note For parameter descriptions, see the Transform Sensor reference page.

Rotation Angular Angular
Parameter Velocity Acceleration
Angle q N/A N/A
Axis axs N/A N/A
Quaternion Q Qd Qdd
Transform R Rd Rdd
Omega X/Omega | N/A WX/Wy/Wz N/A
Y/Omega Z
Alpha X/Alpha N/A N/A bx/by/bz
Y/Alpha Z

The table lists the port labels for each linear parameter that you can sense.
As in the previous table, the first column identifies the parameters that you
can select. The remaining three columns identify the port labels for the
three linear parameter menus in the dialog box: Translation, Velocity,
and Acceleration.

Rotation Port | Angular Angular
Velocity Port Acceleration
Parameter Port
XNY/Z x/ylz vx/vylvz ax/ay/az
Radius rad vrad arad
Azimuth azm vazm aazm

Sensing Spatial Relationships

Related
Examples

Concepts

Rotation Port | Angular Angular
Velocity Port Acceleration
Parameter Port
Distance dst vdst adst
Inclination inc vinc ainc

Select Transform Sensor Parameters To Sense
To select the spatial relationship parameters that you wish to sense:

1 Open the Transform Sensor dialog box.
2 Expand the menu for the parameter group that parameter belongs to.
E.g. Rotation for parameter Angle.

3 Select the check box for that parameter.

The block exposes one physical signal port for each parameter that you select.
The label of each port identifies the parameter that port outputs.

“Sense Double-Pendulum Motion” on page 4-43
“Prescribe Four-Bar Actuation Torque” on page 4-50

¢ “Rotation Measurements” on page 4-26
e “Translation Measurements” on page 4-31
“Measurement Frames” on page 4-40

4-25

4 inierndl Mechanics, Actuation and Sensing

4-26

Rotation Measurements

In this section...

“Measuring Rotation” on page 4-26
“Axis-Angle Measurements” on page 4-26
“Quaternion Measurements” on page 4-28

“Transform Measurements” on page 4-29

You can measure frame rotation in different formats. These include
axis-angle, quaternion, and transform. The different formats are available
through the Transform Sensor block and, to a limited extent, in joint blocks .
The choice of measurement format depends on the model. Select the format
that is most convenient for the application.

Measuring Rotation

Rotation is a relative quantity. The rotation of one frame is meaningful only
with respect to another frame. As such, blocks with rotation sensing capability
require two frames to make a measurement: measured and reference frames.
In these blocks, the follower frame port identifies the measured frame; the
base frame port identifies the reference frame of the measurement.

SimMechanics defines the rotation formats according to standard conventions.
In some cases, more than one convention exists. This is the case, for example,
of the quaternion. To properly interpret rotation measurements, review the
definitions of the rotation formats.

Axis-Angle Measurements

Axis-angle is one of the simpler rotation measurement formats. This format
uses two parameters to completely describe a rotation: axis vector and angle.
The usefulness of the axis-angle format follows directly from Euler’s rotation
theorem. According to the theorem, any 3—D rotation or rotation sequence can
be described as a pure rotation about a single fixed axis.

1.

Weld Joint is an exception

Rotation Measurements

® Axis

o ® Angle

To measure frame rotation in axis-angle format, use the Transform Sensor
block. The block dialog box contains separate Axis and Angle parameters
that you can select to expose the corresponding physical signal (PS) ports
(labeled axs and q, respectively). Because the axis-angle parameters are listed
separately, you can choose to measure the axis, the angle, or both.

Angle
Faxis

Quaternion

5 |

Transform

The axis output is a 3—D unit vector in the form [a,, a,al. This unit vector
encodes the rotation direction according to the right-hand rule. For example,
a frame spinning in a counterclockwise direction about the +X axis has
rotation axis [1 0 0]. A frame spinning in a clockwise direction about the
same axis has rotation axis [-1 0 0].

The angle output is a scalar number in the range O—m. This number encodes
the extent of rotation about the measured axis. By default, the angle is
measured in radians. You can change the angle units in the PS-Simulink
Converter block used to interface with Simulink blocks.

4-27

4 inierndl Mechanics, Actuation and Sensing

4-28

Quaternion Measurements

The quaternion is a rotation representation based on hypercomplex numbers.
This representation uses a 4-vector containing one scalar (S) and three vector
components (V,, Vy, V,). The scalar component encodes the rotation angle.
The vector components encode the rotation axis.

A key advantage of quaternions is the singularity-free parameter space.
Mathematical singularities, present in Euler angle sequences, result in the
loss of rotational degrees of freedom. This phenomenon is known as gimbal
lock. In SimMechanics, gimbal lock causes numerical errors that lead to
simulation failure. The absence of singularities means that quaternions are
more robust for simulation purposes.

To measure frame rotation in quaternion format, use:

¢ Transform Sensor block, if measuring rotation between two general frames.
The Rotation menu of the dialog box contains a Quaternion option that
you can select to expose the corresponding physical signal port (labeled Q).

Angle

Axis
Quaternion
Transform

¢ Joint block possessing spherical primitive, if measuring 3-D rotation
between the two joint frames. The Sensing menu of the dialog box contains
a Position option that you can select to expose the corresponding physical
signal port (also labeled Q). For more information, see Spherical Joint block
reference page.

Rotation Measurements

= Sensing
Position
Velocity (]
Velocity (Y]
Velocity (Z)
Velocity
Acceleration (X
Acceleration ()
Acceleration (£)
Acceleration

Note The Transform Sensor block provides a quaternion option for rotation
and 1its first two time-derivatives (angular velocity and acceleration). On the
other hand, the Spherical Joint block provides a quaternion option only for
rotation — angular velocity and acceleration are measured only in terms of
rotation axis and angle.

The quaternion output is a 4-element row vector Q=5) , where:

S =cos (%)

and

V=V,V,V,]sin o
2%

0 is the rotation angle. The angle can take any value between 0-m. [V, Vy, V]
1s the rotation axis. Axis components can take any value between 0-1.

Transform Measurements

The rotation transform is a 3X3 matrix that encodes frame rotation. In terms
of base frame axes (X, Y, and Z), the follower frame axes (X’, Y’, and Z’) are:

4-29

4 inierndl Mechanics, Actuation and Sensing

4-30

Related
Examples

Concepts

?EX 2 % XX rxy r><z ggx g
& ® @rzx r-zy r-zz %(EZ %

The transform describes the rotation required to bring one frame into
coincidence with another frame. In terms of Transform Sensor port frames,
the rotation transform describes the rotation that brings the base port frame
into coincidence with the follower port frame.

Each matrix column contains the coordinates of a follower frame axis resolved
in the base frame. For example, the first column contains the coordinates

of the follower frame X-axis, as measured in the base frame. Similarly,

the second and third columns contain the coordinates of the Y and Z-axes,
respectively. Operating on a vector with the rotation matrix transforms the
vector coordinates from the base frame to the follower frame.

To measure frame rotation in transform format, use the Transform Sensor
block. The block dialog box contains a Transform option that you can select
to expose the corresponding physical signal port (labeled R). The transform
output is a nine-element matrix with elements valued between 0-1.

Angle

Axis
Quaternion
Transform

“Sense Double-Pendulum Motion” on page 4-43
“Prescribe Four-Bar Actuation Torque” on page 4-50

® “Sensing Spatial Relationships” on page 4-21
* “Translation Measurements” on page 4-31
® “Measurement Frames” on page 4-40

Translation Measurements

Translation Measurements

In this section...

“Measuring Translation” on page 4-31
“Cartesian Measurements” on page 4-32
“Cylindrical Measurements” on page 4-35

“Spherical Measurements” on page 4-37

You can measure frame translation in different coordinate systems. These
include Cartesian, cylindrical, and spherical systems. The different coordinate
systems are available through the Transform Sensor block and, to a limited
extent, in joint blocks 2. The choice of coordinate system depends on the model.
Select the coordinate system that is most convenient for the application.

Measuring Translation

Translation is a relative quantity. The translation of one frame is meaningful
only with respect to another frame. As such, blocks with translation sensing
capability require two frames to make a measurement: measured and
reference frames. In these blocks, the follower frame port identifies the
measured frame; the base frame port identifies the reference frame of the
measurement.

Some measurements are common to multiple coordinate systems. One
example is the Z-coordinate, which exists in both Cartesian and cylindrical
systems. In the Transform Sensor dialog box, coordinates that make up more
than one coordinate system appear only once. Selecting Z outputs translation
along the Z-axis in both Cartesian and cylindrical coordinate systems.

Other measurements are different but share the same name. For example,
radius is a coordinate in both spherical and cylindrical systems. The spherical
radius is different from the cylindrical radius: the former is the distance
between two frame origins; the latter is the distance between one frame origin
and a frame Z-axis.

2. Weld Joint is an exception

4-31

4 inierndl Mechanics, Actuation and Sensing

4-32

P

Spherical Radius Cylindrical Radius

To differentiate between the two radial coordinates, SimMechanics uses the
following convention:

¢ Radius — Cylindrical radial coordinate

® Distance — Spherical radial coordinate

Cartesian Measurements

The Cartesian coordinate system uses three linear coordinates — X, Y, and Z
— corresponding to three mutually orthogonal axes. Cartesian translation
measurements have units of distance, with meter being the default. You
can use the PS-Simulink Converter block to select a different physical unit
when interfacing with Simulink blocks.

Translation Measurements

Transform Sensor

You can select any of the Cartesian axes in the Transform Sensor for
translation sensing. This is true even if translation is constrained along any
of the Cartesian axes. Selecting the Cartesian axes exposes physical signal
ports x, y, and z, respectively.

The figure shows a simple model using a Transform Sensor block to measure
frame translation along all three Cartesian axes. The measurement gives the
relative translation of the follower port frame with respect to the base port
frame. These frames are, respectively, the Solid1l and Solid2 reference port
frames. For more information, see “Representing Frames” on page 1-7.

4-33

4 inierndl Mechanics, Actuation and Sensing

4-34

J_%T Sensor: T

Description

R = e =

Measures time-dependent relationship between two frames, A
Transform Sensor passively senses this 3-D time-varying
transformation, and its derivatives, between the two frames.

In the expandible nodes under Froperties, select which rotational
and translational relationships, induding velodities and
accelerations, you want to measure, After you apply these
settings, the block displays the corresponding output physical

signal ports.

Ports B and F are frame ports that represent the base and
follower frames, respectively. The sensor measures the
transformation and its derivatives as follower frame relative to
base frame. The transformation components can be projected

into one of several frames.

PS-Simulink
Comverter Scope
ofaf—i)
=
{at—D

Properties

Measurement Fr... |World

Soler

& Rotation Configuration
= Angular Velocity
B Angular Acceleration | |/’ ra\x i .|A i
= Translation
X ¥ World Frame I—Ic:a?..m
¥ | = } Joint
= & &
Radius] @c = ﬂ i ﬂ i1
Azimuth [d\l>
Bistanes : Mechanism Configur stion
Inclination)
Velocity

Acceleration

Joints

With joint blocks, you can sense translation along each prismatic primitive
axis. Selecting a sensing parameter from a prismatic primitive menu exposes
the corresponding physical signal port. For example, if you select Position
from the Z Prismatic Primitive (Pz) of a Cartesian Joint block, the block
exposes physical signal port z. If the joint contains zero prismatic primitives,
the joint frames cannot translate with respect to each other, and translation
sensing is not necessary. For this reason, joint blocks with zero prismatic
primitives do not sense translation.

The figure shows a simple model using a Cartesian Joint block to measure
frame translation along all three Cartesian axes. The measurement gives the
relative translation of the follower port frame with respect to the base port

frame. These frames are, respectively, the Solid1 and Solid reference port
frames.

Translation Measurements

| -, Cartesian Joint : Cartesian Joint -]

Description

Represents a cartesian joint between two frames, This joint has
three translational degrees of freedom represented by three
prismatic primitives slong a set of mutually orthogonal axes. This
joint constrains the axes of these frames remain aligned, while
allowing unconstrained 3-D translation,

In the expandible nodes under Properties, specify the state,
actuation method, sensing capabilities, and internal mechanics of
the primitives of this joint. After you apply these settings, the
block displays the corresponding physical signal ports.
Ports B and F are frame ports that represent the base and
follower frames, respectively. The joint direction is defined by
motion of the follower frame relative to the base frame.
Properties
= tic Primitive (Px)
[+ State Targets
11! Internal Mechanics

1) Actustion

I=I Sensing
Position -:.:__=__
Velocity | i
Acceleration D

= ¥ Prismatic Primitive (Py)
[¥] State Targets
LI ol e naties
1 Actuation

I et
I=| Sensing ‘
Positon @
Velocity |
Acceleration D

(%] State Targets
1+ Internal Mechanics

Acceleration [F

Solver
Configuration

Mechanism Configuration

Cylindrical Measurements

The cylindrical coordinate system uses one angular and two linear
coordinates. The linear coordinates are the cylinder radius, R, and length,

Z. The angular coordinate is the azimuth, ¢, about the length axis. Linear
coordinates have units of distance, with meter being the default. The angular
coordinate has units of angle, with radian being the default. You can use
the PS-Simulink Converter block to select a different physical unit when
interfacing with Simulink blocks.

PS-Simulink Scope
Converter

4-35

4 inierndl Mechanics, Actuation and Sensing

4-36

Transform Sensor

Only the Transform Sensor block can sense frame translation in cylindrical
coordinates. In the dialog box of this block, you can select one or more
cylindrical coordinates to measure. The cylindrical coordinates are named Z,
Radius, and Azimuth. Selecting the cylindrical coordinates exposes physical
signal ports z, rad, and azm, respectively.

Note Z belongs to both Cartesian and cylindrical systems.

The figure shows a simple model using a Transform Sensor block to measure
frame translation along all three cylindrical axes. The measurement gives
the relative translation of the follower port frame with respect to the base
port frame. These frames are, respectively, the Solid1 and Solid2 reference
port frames.

Translation Measurements

& Transform Sensor : Transform Sensor E’

Description

Measures time-dependent relationship between two frames, A
Transform Sensor passively senses this 3-D time-varying
transformation, and its derivatives, between the two frames.

In the expandible nodes under Properties, select which rotational
and translational relationships, induding velocities and
accelerations, you want to measure, After you apply these
settings, the block displays the corresponding output physical
signal ports.

PS-Simulink
Converter Scope

B —0
=
fz—0

Ports B and F are frame ports that represent the base and
follower frames, respectively. The sensor measures the
transformation and its derivatives as follower frame relative to
base frame. The transformation components can be projected

e Iy

Trarsform
into one of several frames. Semsar
- Sclver
Properties Corfigurstion
Measurement Fr... |Waorld N

B Rotation
Angular Velocity

B Angular Acceleration
B Translation

~
(=[]

OS]

Radius - Mecharis m Configurstion
Azimuth
Distance
Inclination
B Velocity
B Acceleration

]

Spherical Measurements

The spherical coordinate system uses two angular and one linear coordinates.
The linear coordinate is the spherical radius, R. The angular coordinates are
the azimuth, @, and inclination, 6. The linear coordinate has units of distance,
with meter being the default. The angular coordinates have units of angle,
with radian being the default. You can use the PS-Simulink Converter block
to select a different physical unit when interfacing with Simulink blocks.

4-37

4 inierndl Mechanics, Actuation and Sensing

4-38

Transform Sensor

Only the Transform Sensor block can sense frame translation in spherical
coordinates. In the dialog box of this block, you can select one or more
spherical coordinates to measure. The spherical coordinates are named
Azimuth, Distance, and Inclination. Selecting the spherical coordinates
exposes physical signal ports azm, dst, and inc, respectively.

Note Azimuth belongs to both cylindrical and spherical systems. Distance
is the spherical radius.

The figure shows a simple model using a Transform Sensor block to measure
frame translation along all three spherical axes. The measurement gives the
relative translation of the follower port frame with respect to the base port
frame. These frames are, respectively, the Solid1l and Solid2 reference port
frames.

Translation Measurements

ol

Description

Measures time-dependent relationship between two frames, A
Transform Sensor passively senses this 3-D time-varying
transformation, and its derivatives, between the two frames.
In the expandible nodes under Properties, select which rotational
and translational relationships, incduding velodties and Py
accelerations, you want to measure. After you apply these PS-Simulink
settings, the block displays the corresponding output physical Converter 5
signal ports.

Hz—0
5
Ha—g

Ports B and F are frame ports that reprezent the base and
follower frames, respectively, The sensor measures the
transformation and its derivatives as follower frame relative to
base frame. The transformation companents can be projected
into one of several frames,

Solver
Configuration

Properties

Measurement Fr... ‘World - i
Rotation -
Angular Velocity ST
2 Angular Acceleration Lizud

= Waorld Frame
B Translation

Radius
Azimuth yar
Distance

Inclination

Mechanism Corfiguration

[y]) o

1 =

B Velocrty
Acceleration

Related ® “Sense Double-Pendulum Motion” on page 4-43
Exclmples ® “Prescribe Four-Bar Actuation Torque” on page 4-50

Concepts ® “Sensing Spatial Relationships” on page 4-21
® “Rotation Measurements” on page 4-26
“Measurement Frames” on page 4-40

4-39

4 inierndl Mechanics, Actuation and Sensing

4-40

Measurement Frames

In this section...

“Measurement Frame Purpose” on page 4-40

“Measurement Frame Types” on page 4-41

You can sense the spatial relationship between two frames. When you do
so, SimMechanics resolves the measurement in a measurement frame. For
most joint blocks, the measurement frame is the base frame. However, if
you use either Transform Sensor or a joint block with a spherical primitive,
you can select a different measurement frame. Measurement frames that
you can select includes Base, Follower, and World. The Transform Sensor
block adds the choice between rotating and non-rotating versions of the base
and follower frames.

Measurement Frame Purpose

The measurement frame defines the axes that SimMechanics uses to resolve
a measurement. The measurement still describes the relationship between
base and follower frames. However, the X, Y, and Z components of that
measurement refer to the axes of the measurement frame. SimMechanics
takes the measurement and projects it onto the axes of the measurement
frame that you select. The figure illustrates the measurement frame concept.

Measurement Frame: Base Measurement Frame: World
World
World

Base Follower Base Follower

The arrow connecting base and follower frame origins is the translation
vector. If you select the base frame as the measurement frame, SimMechanics

Measurement Frames

resolves that translation vector along the axes of the base frame. If you
select the World frame as the measurement frame, SimMechanics instead
resolves the translation vector along the axes of the World frame. The
translation vector remains the same, but the frame SimMechanics expresses
that measurement in changes.

Note that you can select the measurement frame only with certain blocks.
Among joint blocks, only those with a spherical primitive offer a selection
of measurement frames. All other joint blocks resolve their measurements
in the base frame. The Transform Sensor block offers the most extensive
selection of measurement frames.

Measurement Frame Types

SimMechanics offers five different measurement frames. These include World
as well as rotating and non-rotating versions of the base and follower frames.
The table describes these measurement frames.

Measurement Frame Description

World Inertial frame at absolute rest.
World is the ultimate reference
frame in a model. The World Frame
block identifies this frame in a
model.

Base Frame that connects to the B port of
the sensing block. Unless you rigidly
connect it to World, Base is generally
non-inertial.

4-41

4 inierndl Mechanics, Actuation and Sensing

4-42

Related
Examples

Concepts

Measurement Frame

Description

Follower

Frame that connects to the F port
of the sensing block. Unless you
rigidly connect it to World, Follower
is generally non-inertial.

Non-Rotating Base/Follower

Non-rotating versions of the Base
and follower frames.

A non-rotating frame is a virtual
frame which, at every point in time,
SimMechanics holds coincident with
the rotating frame, but which has
zero angular velocity with respect to
the World frame.

Measurements that can differ
between rotating and non-rotating
frames are the linear velocity and
linear acceleration.

® “Sense Double-Pendulum Motion” on page 4-43
® “Prescribe Four-Bar Actuation Torque” on page 4-50

® “Sensing Spatial Relationships” on page 4-21
¢ “Rotation Measurements” on page 4-26

“Translation Measurements” on page 4-31

Sense Double-Pendulum Motion

Sense Double-Pendulum Motion

In this section...

“Model Overview” on page 4-43
“Modeling Approach” on page 4-44
“Build Model” on page 4-45

“Guide Model Assembly” on page 4-46
“Simulate Model” on page 4-46

“Save Model” on page 4-49

Model Overview

The Transform Sensor block provides the broadest motion-sensing capability
in SimMechanics models. Using this block, you can sense motion variables
between any two frames in a model. These variables can include translational
and rotational position, velocity, and acceleration.

In this example, you use a Transform Sensor block to sense the lower link
translational position with respect to the World frame. You output the
position coordinates directly to the model workspace, and then plot these
coordinates using MATLAB commands. By varying the joint state targets you
can analyze the lower-link motion under quasi-periodic and chaotic conditions.

4-43

4 inierndl Mechanics, Actuation and Sensing

4-44

Before continuing, you must have completed example “Model Double
Pendulum” on page 3-29.

Modeling Approach

In this example, you rely on gravity to cause the double pendulum to move.
You displace the links from equilibrium and then let gravity act on them. To
displace the links at time zero, you use the State Targets section of the
Revolute Joint block dialog box. You can specify position or velocity. When
you are ready, you simulate the model to analyze its motion.

To sense motion, you use the Transform Sensor block. First, you connect the
base and follower frame ports to the World Frame and lower link subsystem
blocks. By connecting the ports to these blocks, you can sense motion in the
lower link with respect to the World frame. Then, you select the translation
parameters to sense. By selecting Y and Z, you can sense translation along
the Y and Z axes, respectively. You can plot these coordinates with respect to
each other and analyze the motion that they reveal.

Sense Double-Pendulum Motion

Build Model

To sense motion in the double-pendulum model:

1 Open the double pendulum that you created in example “Model Double
Pendulum” on page 3-29.

2 Drag these blocks to the model.

Block Library Quantity

Transform Sensor SimMechanics 1
Second Generation
(SM 2G) > Frames
and Transforms

World Frame SimMechanics 1
Second Generation
(SM 2G) > Frames
and Transforms

PS-Simulink Simscape > Utilities | 2
Converter
To Workspace Simulink > Sinks 2

3 In the Transform Sensor block dialog box, select Translation > Y and
Translation > Z.

4 In the PS-Simulink Converter blocks, specify cm physical units.

5 In the two To Workspace blocks, enter the variable names y_link and
z_link.

6 Connect the blocks to the model as shown in the figure.

4-45

4 inierndl Mechanics, Actuation and Sensing

4-46

Mechanism [)
Configuration ‘\._‘;\5

World Frame1 |+~

T
m
4
Transform _/{
Sensor) l:j
pivot_mount binary_link binary_link 1
w =

77

World Frame

Solver
Configuration

E N
W N
x| Conni ConnZ [5 18 ::: : E| Conn1 Connz [5 2 =] ::: : F| Connt Conn2

_al _dl
Revolute Joint

Revolute Joint! ¥

Guide Model Assembly

Specify the initial state of each joint. Later, you can modify this state to
explore different motion types. For the first iteration, rotate only the top
link by a small angle:

1 Double-click block Revolute Joint.
This is the block between Pivot Mount and Binary Link subsystem blocks.

2 In the State Targets section of the block dialog box, select Specify
Position Target.

3 In Value, enter 10.
Check that the physical unit is deg (degrees).

Simulate Model

To simulate the model, in the Simulink tool bar click the Run button.
Alternatively, with the model window active, press Ctrl+T. Mechanics
Explorer displays the model simulation in the visualization pane.

Sense Double-Pendulum Motion

You can now plot the position coordinates of the lower link. At the MATLAB
command line, enter:

figure(1);

hold;

plot(y_link.data, z_link.data, 'color', [60 100 175]/255);
axis([-10 10 -40 -39])

xlabel('Y Coordinate (cm)');

ylabel('Z Coordinate (cm)');

grid on;

The figure shows the plot that opens. This plots shows that lower link path
is nearly, but not quite, the same with each oscillation. This behavior is
characteristic of quasi-periodic systems.

4-47

4 inierndl Mechanics, Actuation and Sensing

4-48

-39.1

-39.2

-39.3

-394

-39.5

-39.6

Z Coordinate {cm)

-39.7

-39.8

-39.9

40
-10

Y Coordinate (cm)

Simulate Chaotic Motion

By adjusting the revolute joint state targets, you can simulate the model
under chaotic conditions. One way to obtain chaotic motion is to rotate the top
revolute joint by a large angle. To do this, in the Revolute Joint dialog box,
change State Targets > Position > Value to 90 and click OK.

Simulate the model with the new joint state target. To plot the position
coordinates of the lower pendulum link with respect to the World frame, at
the MATLAB command line enter this code:

figure(2);

hold;

plot(y_link.data, z_link.data, 'color', [60 100 175]/255);
axis([-42 42 -42 15])

xlabel('Y Coordinate (cm)');

ylabel('Z Coordinate (cm)');

grid on;

Sense Double-Pendulum Motion

The figure shows the plot that opens. This plots shows that lower link path is
very different with each oscillation. This behavior is characteristic of chaotic
systems.

E
=
@
™
=
o
o
o
&}
(Y]
-40 -30 -20 -10] 10 20 30 40
Y Coordinate {cm)
Save Model

So that you can reuse this model in subsequent examples, save it in a
convenient folder as double_pendulum.

Related e “Prescribe Four-Bar Actuation Torque” on page 4-50
Examples
Concepts ® “Forces and Torques” on page 4-2

® “Actuating and Sensing with Physical Signals” on page 4-18
® “Sensing Spatial Relationships” on page 4-21

4-49

4 inierndl Mechanics, Actuation and Sensing

4-50

Prescribe Four-Bar Actuation Torque

In this section...

“Model Overview” on page 4-50
“Four-Bar Linkages” on page 4-51
“Modeling Approach” on page 4-54
“Build Model” on page 4-55

“Simulate Model” on page 4-59

Model Overview

In SimMechanics, you actuate a joint directly using the joint block. Depending
on the application, the joint actuation inputs can include force/torque or
motion variables. In this example, you prescribe the actuation torque for a
revolute joint in a four-bar linkage model.

Transform Sensor blocks add motion sensing to the model. You can plot the
sensed variables and use the plots for kinematic analysis. In this example,
you plot the coupler curves of three four-bar linkage types: crank-rocker,
double-crank, and double-rocker.

Prescribe Four-Bar Actuation Torque

Before continuing, you must have completed example “Model Four-Bar
Linkage” on page 3-37.

Four-Bar Linkages

The four-bar linkage contains four links that interconnect with four revolute
joints to form a planar closed loop. This linkage converts the motion of an
input link into the motion of an output link. Depending on the relative
lengths of the four links, a four-bar linkage can convert rotation into rotation,
rotation into oscillation, or oscillation into oscillation.

Links

Links go by different names according to their functions in the four-bar
linkage. For example, coupler links transmit motion between crank and
rocker links. The table summarizes the different link types that you may find
in a four-bar linkage.

4-51

4 inierndl Mechanics, Actuation and Sensing

Link Motion

Crank Revolves with respect to the ground
link

Rocker Oscillates with respect to the ground
link

Coupler Transmits motion between crank
and rocker links

Ground Rigidly connects the four-bar linkage
to the world or another subsystem

It is common for links to have complex shapes. This is especially true of the
ground link, which may be simply the fixture holding the two pivot mounts
that connect to the crank or rocker links. You can identify links with complex
shapes as the rigid span between two adjacent revolute joints. In example
“Model Four-Bar Linkage” on page 3-37, the rigid span between the two pivot
mounts represents the ground link.

Linkages

The type of motion conversion that a four-bar linkage provides depends on
the types of links that it contains. For example, a four-bar linkage that
contains two crank links converts rotation at the input link into rotation at
the output link. This type of linkage is known as a double-crank linkage.
Other link combinations provide different types of motion conversion. The
table describes the different types of four-bar linkages that you can model.

Linkage Input-Output Motion

Crank-rocker Continuous rotation-oscillation (and
vice-versa)

Double-Crank Continuous rotation-continuous
rotation

Double-rocker Oscillation-oscillation

Grashof Condition

The Grashof theorem provides the basic condition that the four-bar linkage
must satisfy so that at least one link completes a full revolution. According

4-52

Prescribe Four-Bar Actuation Torque

to this theorem, a four-bar linkage contains one or more crank links if
the combined length of the shortest and longest links does not exceed the
combined length of the two remaining links. Mathematically, the Grashof
condition is:

s+l < p+q
where:
® sis the shortest link

¢]is the longest link

® p and q are the two remaining links

Grashof Linkages
A Grashof linkage can be of three different types:

¢ Crank-rocker

® Double-crank

® Double-rocker

By changing the ground link, you can change the Grashof linkage type. For
example, by assigning the crank link of a crank-rocker linkage as the ground

link, you obtain a double-crank linkage. The figure shows the four linkages
that you obtain by changing the ground link.

4-53

4 inierndl Mechanics, Actuation and Sensing

4-54

Crank-Rocker | Crank-Rocker 1l

Double-Crank Double-Rocker

Modeling Approach

In this example, you perform two tasks. First you add a torque actuation input
to the model. Then, you sense the motion of the crank and rocker links with
respect to the World frame. The actuation input is a torque that you apply to
the joint connecting the base to the crank link. Because you apply the torque
at the joint, you can add this torque directly through the joint block. The block
that you add the actuation input to is called Base-Crank Revolute Joint.

You add the actuation input to the joint block through a physical signal input
port. This port is hidden by default. To display it, you must select Provided
by Input from the Actuation > Torque drop-down list.

Prescribe Four-Bar Actuation Torque

You can then specify the torque value using either Simscape or Simulink
blocks. If you use Simulink blocks, you must use the Simulink-PS Converter
block. This block converts the Simulink signal into a physical signal that
SimMechanics can use. For more information, see “Actuating and Sensing
with Physical Signals” on page 4-18.

To sense crank and rocker link motion, you use the Transform Sensor block.
With this block, you can sense motion between any two frames in a model. In
this example, you use it to sense the [Y Z] coordinates of the crank and rocker
links with respect to the World frame.

The physical signal output ports of the Transform Sensor blocks are hidden
by default. To display them, you must select the appropriate motion outputs.
Using the PS-Simulink Converter, you can convert the physical signal outputs
into Simulink signals. You can then connect the resulting Simulink signals to
other Simulink blocks.

In this example, you output the crank and rocker link coordinates to the
workspace using Simulink To Workspace blocks. The output from these
blocks provide the basis for phase plots showing the different link paths.

Build Model

Provide the joint actuation input, specify the joint internal mechanics, and
sense the position coordinates of the binary_link and binary_link1 end frames.

Provide Joint Actuation Input

To add an actuation input to the four-bar linkage:

1 Open model the four_bar_linkage model that you created in example
“Model Four-Bar Linkage” on page 3-37.

2 Drag these blocks to the model.

Block Library Quantity
Simulink-PS Simscape > Utilities | 1
Converter

Constant Simulink > Sources |1

4-55

4 inierndl Mechanics, Actuation and Sensing

3 In the Actuation > Torque drop-down list, select Provided by Input.
The block displays the physical signal input port t.

4 Connect the blocks as shown in the figure.

Conn2 Conni [5
two_hole_binary_link
21} 2]
F ol
) Crank-Coupler Revolute Joint Coupler-Rodier Reveolute Joint)
G e
3| I}
=]
c c
E E
5 5
a o
binary_link binary_lirk1
= E
= 5
(5] o
7] [
Y5 Mechanism [
i Soher
) Base-Crark Revolte Joint Configuration Configuration Base-Rocker Revolute Joint j
o " P
Wit =0
—~>
pivot_meount pivot_mournt1
A A
—— P ConnZ Connl [& g5 B[El5 - /'\{ z %] Connt ConnZ [
) |
orark_base_transform rocker_baese transform
Simulirk-PS
Comverter
a
12
£ Warld Frame
77

4-56

Prescribe Four-Bar Actuation Torque

5 In the Input Signal Unit parameter of the Simulink-PS Converter block
dialog box, enter N*m and click OK.

Specify Joint Internal Mechanics

Real joints dissipate kinetic energy as heat due to damping. Increase the
fidelity of the four-bar model by specifying the joint damping coefficient. You
can specify this coefficient directly from the joint block dialog boxes.

1 Open the four Revolute Joint block dialog boxes.
2 In Internal Mechanics > Damping enter 5e-4 and press OK.
Keep the N*m/ (deg/s) default units.

Sense Link Position Coordinates

Complete the model with additional blocks to sense the position coordinates of
binary_link and binary_link1 end frames.

1 Add these blocks to the model.

Block Library Quantity

Transform Sensor SimMechanics > Fram@s
and Transforms

World Frame SimMechanics > Framés
and Transforms

PS-Simulink Simscape > Utilities | 4

Converter

To Workspace Simulink > Sinks 4

2 In the Transform Sensor block dialog boxes, select Translation > Y and
Translation > Z.

3 In the Input Signal Unit parameters of the PS-Simulink Converter block
dialog boxes, enter cm.

4 In the Variable Name parameters of the To Workspace block dialog boxes,
enter these values:

4-57

4 inierndl Mechanics, Actuation and Sensing

® y crank
® z crank
® y rocker

® z _rocker
5 Connect and name the blocks as they appear in the figure.

The new blocks appear in the top portion of the figure.

4-58

Prescribe Four-Bar Actuation Torque

World Frame1 |+~
%’T)

[Conn2 Conni [

two_hole_binary_link

2] £1]
=7]
o) Crank-Coupler Revolts Joint Coupler-Recker Revolte Jant| o |

[Im| |

= =

= 2

E =

s 3

8 8

binary_lik inary_lrk 1

= T

B £

H £

3 3

i3}
F N)) Mechenism Saiver T

B Hoe Uik Behe Jory Configurstion Configurstion BeseRoder Revolute Joint
& PO
pivot_mount pivot_mountt
? =l
Conn2 Connt [T R 7R B 4 | Connt Connz [
’L - /L -
S—— crank_bese_farsform focker_tese_rarstarm
Converter u

=
e Warld Frame
e

Simulate Model

To simulate the model, in the Simulink tool bar click the Run button.
Alternatively, with the model window active, press Ctrl+T. Mechanics
Explorer displays the model simulation in the visualization pane.

4-59

4 interndl Mechanics, Actuation and Sensing

4-60

Plot the position coordinates of the binary_link and binary_link1 end frames.
At the MATLAB command line, enter this code:

figure(1);

hold;

plot(y_crank.data, z_crank.data, 'color', [60 100 175]/255);
plot(y_rocker.data, z_rocker.data, 'color', [210 120 0]/255);
axis([-30 30 -30 30]);

xlabel('Y Coordinate (cm)');

ylabel('Z Coordinate (cm)');

grid on;

The figure shows the plot that opens. This plots shows that binary_link
completes a full revolution, while binary_link1 completes only a partial
revolution, e.g. it oscillates. This behavior is characteristic of crank-rocker
systems.

Prescribe Four-Bar Actuation Torque

30 T T

Z Coordinate (cm)

-20 __________ i’ __________________ aTTTT ST b B L -
30 H H
230 20 A0 0 10 20

Y Coordinate {cm)

Simulate Model in Double-Crank Mode
Try simulating the model in double-crank mode. You can change the four-bar
linkage into a double-crank linkage by adjusting the relative link lengths. The
following lengths ensure the model represents a double-crank linkage.

30

Block Parameter Value
binary_link Length 0.25
two_hole_binary_link Length 0.20
binary_link1 Length 0.30
crank_base_transform | Translation > Offset | 0.05
rocker_base_transform | Translation > Offset | 0.05

Update and simulate the model. The figure shows the updated visualization
display in Mechanics Explorer.

4-61

4 interndl Mechanics, Actuation and Sensing

4-62

Plot the position coordinates of the binary_link and binary_link1 end frames.
At the MATLAB command line, enter:

figure(2);

hold;

plot(y_crank.data, z_crank.data, 'color', [60 100 175]/255);
plot(y_rocker.data, z_rocker.data, 'color', [210 120 0]/255);
axis([-40 40 -40 40]);

xlabel('Y Coordinate (cm)');

ylabel('Z Coordinate (cm)');

grid on;

The figure shows the plot that opens. This plots shows that both links
complete a full revolution. This behavior is characteristic of double-crank
linkages.

Prescribe Four-Bar Actuation Torque

Z Coordinate (cm)

-10

Y Coordinate (cm)

Simulate Model in Double-Rocker Mode
Try also simulating the model in double-rocker mode. As before, you can
change the four-bar linkage into a double-rocker linkage by adjusting the
relative link lengths. The following lengths ensure the model represents a

double-crank linkage.

0 10 20 30 40

Block Parameter Value
binary_link Length 0.30
two_hole_binary_link Length 0.10
binary_link1 Length 0.35
crank_base_transform | Translation > Offset | 0.10
rocker_base_transform | Translation > Offset | 0.10

Update and simulate the model. The figure shows the updated visualization
display in Mechanics Explorer.

4-63

4 interndl Mechanics, Actuation and Sensing

4-64

Plot the position coordinates of the binary_link and binary_link1 end frames.
At the MATLAB command line, enter:

figure(3);

hold;

plot(y_crank.data, z_crank.data, 'color', [60 100 175]/255);
plot(y_rocker.data, z_rocker.data, 'color', [210 120 0]/255);
axis([-30 10 -40 -20]);

xlabel('Y Coordinate (cm)');

ylabel('Z Coordinate (cm)');

grid on;

The figure shows the plot that opens. This plots shows that neither link
completes a full revolution. This behavior is characteristic of double-rocker
linkages.

Prescribe Four-Bar Actuation Torque

Related
Examples

Concepts

Z Coordinate (cm)

-3 25 20 5 10 -5 0 £ 10
Y Coordinate (cm)

® “Sense Double-Pendulum Motion” on page 4-43

“Correct Aiming Mechanism Assembly Error” on page 3-48

® “Forces and Torques” on page 4-2
® “Actuating and Sensing with Physical Signals” on page 4-18

“Sensing Spatial Relationships” on page 4-21

4-65

4 inierndl Mechanics, Actuation and Sensing

Prescribe Four-Bar Motion

In this section...

“Model Overview” on page 4-66

“Build Model” on page 4-67

“Simulate Model” on page 4-70

“Actuate Model Using Sensed Torque” on page 4-72
“Guide Model Assembly” on page 4-75

“Simulate Updated Model” on page 4-75

Model Overview

For certain applications, you must specify joint motion directly. Inverse
dynamic analysis is one example. In this analysis mode, you prescribe joint
motion and determine the actuation forces and torques required to achieve
that motion.

In this example, you prescribe the angular trajectory of a four-bar revolute
joint. You prescribe that trajectory directly using the Revolute Joint block.
You then sense and plot the actuation torque required to achieve the
prescribed trajectory.

-~
'
()T['.]'
\ o y
‘. .-"

Before continuing, you must have completed example “Model Four-Bar
Linkage” on page 3-37.

4-66

Prescribe Four-Bar Motion

Build Model

This example is based on the four_bar_linkage model that you created in
example “Model Four-Bar Linkage” on page 3-37. To add joint motion input
and actuation torque output to that model:

1 Open the four_bar_linkage model.

2 In the dialog box of the Base-Crank Revolute Joint block, specify these

parameter settings.

Parameter

Setting

Actuation > Torque

Automatically Computed

Actuation > Motion

Provided by Input

Sensing > Actuator Torque

Selected

The joint block displays two physical signal ports. Input port q accepts the
joint angular position. Output port t provides the joint actuation torque
required to achieve that angular position.

3 In the Internal Mechanics > Damping Coefficient parameter of the
Revolute Joint block dialog boxes, enter 5e-4.

4 Drag these blocks into the model.

Block Library Quantity
Simulink-PS Simscape > Utilities | 1
Converter

PS-Simulink Simscape > Utilities | 1
Converter

To Workspace Simulink > Sinks 1

Scope Simulink > Sinks 1

Signal Builder Simulink > Sources |1

5 Connect the bocks as shown in the figure.

4-67

Internal Mechanics, Actuation and Sensing

4-68

Cennt |5

two_hole binary_link

Soher
Caonfiguration

fix)=0

Coupler-Rodker Revolute Joint

binary_link1

Base-Rodier Rewolute Joint

pivot_mount!

2]
L
‘&;_J Crank-Coupler Revolute Joint
|
2l
-
E
o
a
binary_link
s
5
(&7
| P5-Simulink
Comverter To Workspacs
“¥
) Base-Crank Revolute Joint
& o
ol A
pivot_mount
L | ConnZ Conni [5
Simulink-PS
Converter
Signal Builder

s R o

orank_base transform

=1 E,

rocker_base ransform

Twim

‘World Frame

£ Connt Conn2 [————

Prescribe Four-Bar Motion

L= I I -~ =

[I - T N]

6 Specify these block parameters.

Block Parameter Value
To Workspace Variable name tcrank
PS-Simulink Output signal unit N*m
Converter

Units > Input signal | rev

Simulink-PS
Converter

unit

Input
Handling > Filtering
and derivatives

Filter input

Input
Handling > Input
filtering order

Second-order
filtering

7 In the Signal Builder window, specify the joint angular trajectory as shown

in the figure.

e

Signal 1

4-69

4 interndl Mechanics, Actuation and Sensing

This signal corresponds to a constant angular speed of 1 rev/s from t =
1s onwards.

Simulate Model

Run the simulation. Mechanics Explorer opens with a dynamic display of the
four-bar model.

In the Mechanics Explorer toolstrip, click the isometric view button @ for
a 3-D viewpoint.

4-70

Prescribe Four-Bar Motion

Open the Scope window. It displays the joint actuation torque required to
achieve the prescribed motion input.

4-71

4 inierndl Mechanics, Actuation and Sensing

4-72

04

0e

07

0e

0&

0.4

0.3

0.2

01

Actuate Model Using Sensed Torque

Change actuation mode from motion input to torque input. Then, verify that
the angular velocity of the Base-Crank Revolute Joint block equals 1 rev/s.
This angular velocity corresponds to the original motion input you prescribed.

parameter settings.

T T T T T T T T
i 1] 1 | i 1]
0 1 2 3 4 5 E 7 g g 10

1 Disconnect the Signal Builder and To Workspace blocks from the model.

2 In the dialog box of the Base-Crank Revolute Joint block, change these

Parameter Original Setting New Setting

Actuation > Torque | Automatically

computed

Provided by Input

Actuation > Motion | Provided by Input Automatically

Computed

Prescribe Four-Bar Motion

Parameter Original Setting New Setting
Sensing > Velocity Unselected Selected
Sensing > Actuator | Selected Unselected

Torque

3 In the PS-Simulink Converter block dialog box, change Qutput signal

unit to rev/s.

4 In the Simulink-PS Converter block dialog box, change Input signal

unit to N*m.

5 From the Simulink Sinks library, drag a From Workspace block and

connect it as shown in the figure.

4-73

4 inierndl Mechanics, Actuation and Sensing

| Conn2

F !

Crank-Coupler Revolute Joint

Conn2 E—EE‘

Conni |4

two_hole binary_link

Mechanism
Configuration

[

Solver
Configuration

A

q flx) =

binary_link
=
5
o
0T PS-Simulirk
Comverter
PSS | -
—
Scope
M
“ N
) Base-Crank Revolute Joint
. Ll
] A
pivot mount
L | ——— | ConnZ Conni [5
ray
Simulink-P35 E

Comerter [g

4-74

torank

crank_base fransform

Els "ﬁs‘,‘IH—E Conin
J=

rocker base_transform

e

World Frame

Prescribe Four-Bar Motion

Guide Model Assembly

For the sensed actuation torque to yield the original prescribed motion, the
initial joint states of the two model versions (one with the original prescribed
motion as input, the other with the sensed actuation torque as input) must
be the same.

When a model contains joints with motion inputs, the initial state is dictated
by the motion inputs. If the model contains no motion inputs, the initial state
is dictated solely by joint state targets, if any.

In this example, the motion input sets the initial state of the Base-Crank
Revolute Joint block at zero degrees. To ensure that simulation of the
torque-actuated model starts from the same initial state, you must specify a
position state target of zero degrees for the Base-Crank Revolute Joint block.

1 In the dialog box of the Base-Crank Revolute Joint block, select State
Targets > Specify Position Target.

2 In Value, enter 0 and click OK.

Simulate Updated Model

Run the simulation. Mechanics Explorer displays the updated model. Click
the isometric view button for a 3-D viewpoint of the model.

4-75

4 interndl Mechanics, Actuation and Sensing

Open the Scope window. It displays the joint angular velocity, in rev/s units,
due to the prescribed torque input.

4-76

Prescribe Four-Bar Motion

1.2 T T T T ; T T T
|
1= 1 P A P,
1] =) S K U S SIS _
1 O U S DU
=) T P S
- N W WO S T W _
0.2 i 1 | 1 | i i |
0 1 2 3 4] E 7] g 10

The angular velocity remains constant at 1 rev/s from t = 1s
onwards—precisely as prescribed in the original motion input.

Related
Examples

® “Sense Double-Pendulum Motion” on page 4-43
e “Prescribe Four-Bar Motion” on page 4-66

e “Specify Motion Input Derivatives” on page 4-15

Concepts

® “Forces and Torques” on page 4-2

® “Joint Actuation” on page 4-7

“Actuating and Sensing with Physical Signals” on page 4-18

4-77

4 inierndl Mechanics, Actuation and Sensing

4-78

Prescribe Two-Bar Motion

In this section...

“Model Overview” on page 4-78

“Add Virtual Joint” on page 4-79

“Add Motion Inputs” on page 4-82

“Add Actuation Torque Outputs” on page 4-86
“Simulate Model” on page 4-87

Model Overview

You can prescribe an end effector trajectory relative to the world frame. To
perform this task, you must connect the end effector and world frames using
a joint block. This block provides the two frames with the required degrees
of freedom, but it does not represent a physical joint. The joint is said to be
virtual.

In this example, you prescribe a square trajectory for the end effector of a
two-arm linkage relative to the world frame. A 6-DOF Joint block represents
the virtual joint between the end effector and world frames. Using this block,
you sense and plot the actuation torques acting at the two revolute joints
present in the linkage.

Prescribe Two-Bar Motion

¢ L
.
.
.
.
»
.. .
* _ LY
. .
Y
’ . "
¢ (t) '
¥ #
- *
. ’
.) .
. t ¢
— T{t) .
’
. .
. .
. - .
. +
. ’
. ‘
. ’
. "
. .

Before continuing, you must have completed example “Sense
Double-Pendulum Motion” on page 4-43.

Add Virtual Joint

So that you can specify the end effector trajectory with respect to the world
frame, connect the two using a virtual 6-DOF joint.

1 Open the double_pendulum model.

2 Drag these blocks into the model.

4-79

4 inierndl Mechanics, Actuation and Sensing

4-80

Block Library Quantity
6-DOF Joint SimMechanics 1

Second Generation

(SM2G) > Joints
Rigid Transform SimMechanics 1

Second Generation
(SM2G) > Frames
and Transforms

3 Connect the blocks as shown in the figure.

Prescribe Two-Bar Motion

Mecharism |
Configuration |- pivat_mount
World Frame1 |«
t| Conni Conn2 [9—
|
Revolute Joint) Sy
e &= Rigid| 4\
gt Transf y
Configur sticn EME SR ,]‘u_
binary_link
L+ Conn1 ConnZ [9—
P ®
Ir, o
21|)
oy 8 Transform o
Revolute Joint1 6-DOF Joint - ‘g‘ Sensor 1%
PO %)
_at L
| w
LT L = M
binary_link1 k'
L= Connt ConnZ [5

Note The blocks in the figure have been rearranged to conserve space.

4 In the Rigid Transform block dialog box, specify these parameters.

4-81

4 inierndl Mechanics, Actuation and Sensing

4-82

Parameter Value
Rotation > Method Standard Axis
Rotation > Axis +Y

Rotation > Angle 90

These parameters specify the rotation transform required to make the Z
axes of the world and binary_link1 Conn2 frames parallel to each other.
This rotation transform ensures that the model assembles properly.

5 Inside the binary_link1 subsystem, replace a rigid connection line with a
Weld Joint block.

Reference t
Frame ’JE: -
I
o LR = 'BJ’F,II! Bz
Connl o P Conn2
o hole Weld Joint to_peg
21 21

- 8- 5.

Adding the Weld Joint block ensures that the now-closed-loop system
contains at least one joint with neither motion inputs nor computed
actuation torque, a SimMechanics simulation requirement.

Add Motion Inputs

Drag and connect the required blocks to specify a square trajectory.

1 In the 6-DOF Joint block dialog box, specify these parameters.

Prescribe Two-Bar Motion

Parameter

Value

X Prismatic Primitive
(Px) > Actuation > Motion

Provided by Input

Y Prismatic Primitive
(Py) > Actuation > Motion

Provided by Input

2 Drag these blocks into the model.

Block Library Quantity
Simulink-PS Simscape > Utilities | 2
Converter

Signal Builder Simulink > Sources |2

3 Connect the blocks as shown in the figure.

4-83

4 inierndl Mechanics, Actuation and Sensing

Mechanism /())
Configuration '\-_a\'/\ pivot_mount
World Framed [
0 7] Conni Conn2 [F—
e
Waorld Frame:
. D:nj.{ [
Rewolute Joint| o) w f
Solver — Sadfp
Configuration R = qué
binary_link l
= Group 1
ey £
o
7
L] Connt ConnZ [G— $ ¢
o
7
vV Y =
o i =z
4
& smsd m,l’ ey t_ Transform /}
evolute Joint 3 oint “] j
& i? T s Q
w
binary_ lirk 1
L] Connt Conn2 [

4 In the dialog boxes of the Simulink-PS Converter blocks, specify these

parameters.

Parameter Value

Units > Input signal unit m

Input Handling > Filtering and | Filter input
derivatives

Input Handling > Input Second-order filtering

filtering order

4-84

Prescribe Two-Bar Motion

0.5

0.44

0.3

0.2

0.1

0.1

0.2

0.3

0.4

RN OO

Signal 1

5 For the Signal Builder block that connects to the px port of the 6-DOF
Joint block, specify this signal.

———

0.5
0

Time (sec)

This signal provides the -Z coordinates, as seen in the world frame, of the
square trajectory that the end effector is to follow.

6 For the Signal Builder block that connects to the py port of the 6-DOF
Joint block, specify this signal.

4-85

4 inierndl Mechanics, Actuation and Sensing

0.5--

——
' '

Signal 1

0.5
0

4-86

Time (sec)
This signal provides the Y coordinates, as seen in the world frame, of the
square trajectory that the end effector is to follow.

7 In the dialog boxes of the Revolute Joint and Revolute Joint1 blocks, set
Actuation > Torque to Automatically Computed.

Add Actuation Torque Outputs

Drag and connect the required blocks to sense the actuation torque outputs.

1 In the dialog boxes of the Revolute Joint and Revolute Joint1 blocks, select
Sensing > Actuator Torque.

2 Drag these blocks into the model.

Block Library Quantity
PS-Simulink Simscape > Utilities | 2
Converter

To Workspace Simulink > Sinks 2

Prescribe Two-Bar Motion

3 In the dialog boxes of the two To Workspace blocks, enter the variable
names t1 and t2.

4 Connect the blocks as shown in the figure.

Mechanism [)
Configuration “".-'-.\} pivot_mount

S W Conni Conn2
77
World Frame

fx)=0 =
Revolute Joint) s
| rigid| 24

Sohver !
Configuration L_T v Trarsform) a“”é'
5 Birery
\

World Frame1 |+

A

Connl Conn2

o
m
=g 1 Transform
Rewlute Joint1 | o SDOF Jaint| - g S
P - .
"
L
2 5 PSf]
-— binary_link1
Conni Conn2 [5

il

5 In the dialog boxes of the PS-Simulink Converter blocks, specify units of
N*m.

Simulate Model
Run the simulation. Mechanics Explorer opens with a dynamic display of

the two-bar model.

4-87

4 interndl Mechanics, Actuation and Sensing

In the Mechanics Explorer toolstrip, click the isometric view button [i for
a 3-D viewpoint.

4-88

Prescribe Two-Bar Motion

Plot the position coordinates of the binary_link1 peg frame with respect to the
world frame. At the MATLAB command line, enter this code:

figure(1);

plot(y_link.data, z_link.data, 'color', [60 100 175]/255);
axis([-45 45 -45 45]);

xlabel('Y Coordinate (cm)');

ylabel('Z Coordinate (cm)');

grid on;

The figure shows the square trajectory that the binary_link1 peg frame traces
during simulation.

4-89

4 inierndl Mechanics, Actuation and Sensing

R P

e
(=SSN | -

D T s R P

R e e e
O U [U

Ammmm -

L T
I e e e e

Am -

=
[|

1 '
]]
1 1

= =

i

40}--
30(--
10f--

(o) ajeuipioony 7

Y Coordinate {cm)
[60 100 175]/255);
[210 120 0]/255);

b

‘color',
(N*m) ") ;

)

ylabel('Torque

grid on;

‘color

Plot the computed actuation torques acting at the two revolute joints in the

linkage. At the MATLAB command line, enter this code:
The figure shows the actuation torques required to achieve the square

trajectory that you prescribed.

figure(2);
hold on;
plot(t1.data,
plot(t2.data,
xlabel('Time

4-90

Prescribe Two-Bar Motion

|
Revolute Joint1
Revolute Joint

B e
]
'
'
]
]
'
'
]
|
'
]
'
'
]
]
'
'
]
]
'
'
]

i e R Ry A e

2
0 2000 4000 6000 8000 10000
Time

Related ® “Sense Double-Pendulum Motion” on page 4-43
Exqmples e “Prescribe Four-Bar Motion” on page 4-66

e “Specify Motion Input Derivatives” on page 4-15
Concepts e “Joint Actuation” on page 4-7

[]

“Actuating and Sensing with Physical Signals” on page 4-18

4-91

4 inierndl Mechanics, Actuation and Sensing

4-92

Simulation and Analysis

Simulation

¢ “Configure Model for Simulation” on page 5-2

¢ “Find and Fix Simulation Issues” on page 5-4

5 Simulation

Configure Model for Simulation

5-2

During simulation, SimMechanics employs a Simulink global solver to
determine the configuration of a model as a function of time. You can select
the best solver for your application from a list of solvers that Simulink
provides. Simulation parameters include the numerical step used to
progress through the simulation and the solver tolerance values. Adjust the
parameters to optimize speed and accuracy of the simulation.

For solver selection and parameter specification, see:

e “Choose a Solver” in the Simulink documentation.

e “Setting Up Solvers for Physical Models” in the Simscape documentation.

Specify Solver Settings

To select a global solver for your model:

1 On the Simulink menu bar, click Simulation > Model Configuration
Parameters.

2 On the Tree View pane, select Solver.

3 In Solver Options, click Type and select Variable-step or Fixed-step.

Note For best performance, select Variable-step. For model deployment,
select Fixed-step.

4 Click Solver and select the appropriate solver for your application. The
default solver is ODE45 (Dormand-Prince).

To modify the global solver parameters for your model:

1 In the Solver options pane of the Model Configuration Parameters
window, enter the desired values for step size and tolerance parameters.

Configure Model for Simulation

Reducing the values of the step size and tolerance parameters enhances
simulation accuracy, but decreases simulation speed. Adjust the parameters
to obtain an optimal trade-off between simulation speed and accuracy.

Related ® “Configure Model for Simulation” on page 5-2
Examples ¢ “Configure Model for Rapid Acceleration Mode” on page 8-8

¢ “Find and Fix Simulation Issues” on page 5-4

Concepts ® “Visualizing and Inspecting a Model” on page 6-2

5-3

5 Simulation

Find and Fix Simulation Issues

5-4

In this section...

“Models with For Each Subsystem blocks have limited visualization” on
page 5-4

“Models with Model blocks have no visualization” on page 5-4

“Simscape local solvers do not work with SimMechanics” on page 5-4

Under certain conditions, a model that you simulate can behave in unexpected
ways. Some issues that you can encounter while simulating a SimMechanics
model include:

e Models with For Each Subsystem blocks have limited visualization
e Models with Model blocks have no visualization

® Simscape local solvers do not work for SimMechanics

Models with For Each Subsystem blocks have limited
visualization

Models with one or more For Each Subsystem blocks simulate with limited
visualization. The Mechanics Explorer visualization utility displays the model
in only one of the instances which the For Each Subsystem block provides.

The visualization limitation does not affect model simulation—SimMechanics
simulates the model for all instances of the block.

Models with Model blocks have no visualization

Models with Model blocks (known as referenced models) simulate with no
visualization. During model simulation, SimMechanics issues a warning at
the MATLAB command line. The Mechanics Explorer visualization utility
does not open.

Simscape local solvers do not work with
SimMechanics

SimMechanics software does not support Simscape local solvers. If you select
a local solver in the Simscape Solver Configuration block, the solver does not

Find and Fix Simulation Issues

Related
Examples

Concepts

apply to the SimMechanics portion of a model. SimMechanics blocks continue
to use the Simulink global solver that you select in Model Configuration
Parameters for your model.

Note SimMechanics requires the Simulink global solver to be continuous.
If the global solver is discrete, SimMechanics issues an error and the model
does not simulate. This requirement applies to both fixed- and variable-step
solvers.

¢ “Configure Model for Simulation” on page 5-2
® “Configure Model for Rapid Acceleration Mode” on page 8-8

® “Visualizing and Inspecting a Model” on page 6-2

5 Simulation

5-6

Visualization and
Animation

® “Visualizing and Inspecting a Model” on page 6-2
e “Configure Visualization Settings” on page 6-6

® “Rotate, Pan, and Zoom View” on page 6-18

® “Record Animation Video” on page 6-22

® “Adjust Video Playback Speed” on page 6-25

¢ “Find and Fix Visualization Issues” on page 6-29

6 Visualization and Animation

Visualizing and Inspecting a Model

In this section...

“Mechanics Explorer Window” on page 6-2

“Model Report” on page 6-4

“Animation” on page 6-5

Mechanics Explorer is a utility that provides 3-D visualization, model
navigation, and troubleshooting tools for SimMechanics models. By default,
each time you update or simulate a SimMechanics model, Mechanics Explorer
displays the updated model. Use Mechanics Explorer frequently throughout
the modeling process to uncover errors in rigid body geometry and frames or
in multibody assembly.

Mechanics Explorer Window

The Mechanics Explorer window contains three primary panes:

¢ Visualization—Display a 3-D graphic representation of a multibody model.
® Model Navigation—Navigate the model by subsystem, block or port.

® Model Property—Inspect block properties and port connections in a model.

Visualizing and Inspecting a Model

A\ Mechanics Explorers - Mechanics Explorer-sm_double_wishbone_suspension EI@

File Explorer Simulation View Tools Window Help N AX

k] ®-!& :\.f T = i Hﬂ DEBE ‘u‘iewconvention::Zup(XYTop] ':] t:\'"i"‘%l-‘- J—'G Fod D ':

| Mechanics Explorer-sm_double_wishbone_suspension |

-
Sy Chassis_Assembly
DLA

DLE

DRA

DRE

FC

LT

RT

uLa

ULB

ULC

URA

URB

URC

J--DDD Back_Frame
7% DLLink

7% DRLink

—J--DDD Front_Frame

m

frrn W e B

m

I—I 0% LI:'/I 1X —J— Time |0

Visualization

The visualization pane of Mechanics Explorer displays a 3-D view of a
SimMechanics model. The 3-D view is static when you update a model
(Ctrl+D), or dynamic when you simulate a model (Ctrl+T). You can choose
from seven preset views: front, back, top, back, left, right, and isometric. You
can rotate, pan, and zoom a model. See “Visualizing and Inspecting a Model”
on page 6-2.

6-3

6 Visualization and Animation

6-4

Model Navigation

Identify a subsystem, block, or port with the model navigation pane. When
you click the name of a subsystem, block, or port in the model navigation
pane, the visualization pane highlights the corresponding entity with a light
blue color. Use the model navigation pane to highlight multibody subsystems,
rigid body subsystems, and frames in the visualization pane.

Model Property

Each time you click the name of an entity in the model navigation pane, the
model property pane displays the parameters and frames associated with the
selected entity. Use the model property pane to review the parameters and
frames that belong to a subsystem, block, or port.

Model Report

Mechanics Explorer provides the Model Report tool to uncover model assembly
problems. Model Report identifies the status of each joint and constraint in a
model, and flags assembly errors. For joints with state targets, Model Report
includes the actual and specified state targets. The report flags joints that
have unsatisfied state targets. The following image shows the Model Report
window for model sm_four_bar.

Note Model Report provides the actual state values for the assembled
configuration. In models with prescribed motion inputs, this configuration
may differ from the simulation time zero, making the actual state values
unreliable. As a rule, avoid using Model Report in models with prescribed
inputs.

Visualizing and Inspecting a Model

Related
Examples

Concepts

ﬂ Model Report - sm_four_bar EI @
Assembly status: Q
Joints: o}
Constraints: O
EJUi"tSE Constraints I Statistics|
Pasition Velocity
Joint Assembled Primitive
Actual Specified Unit Pricrity Status Actual Specified Units Pricrity Status
Base_Cran... O Rz +150 +150 deg High O -360 -360 deg/s High 0]
Base_Rock... @] Rz +173.824 deg -179.769 deg/s
Connecto... o Rz +67.6893 deg -249.628 deg/s
Crank_Co... O Rz -43.8653 -45 deg Low A +429.858 deg/s
L3 L3
Animation

You can record the video of a simulation for future reference or to share.

Mechanics Explorer provides a Record button & so that you can create the
simulation video. All videos have a quality setting of 30 frames per second
(fps) and AVI format. You can open a simulation video externally with any
video player that supports AVI files. See “Record Animation Video” on page
6-22.

“Configure Visualization Settings” on page 6-6
“Rotate, Pan, and Zoom View” on page 6-18
¢ “Find and Fix Visualization Issues” on page 6-29

® “Visualizing and Inspecting a Model” on page 6-2
® “Identifying Assembly Issues” on page 3-25

6 Visualization and Animation

Configure Visualization Settings

In this section...

“Change Background Color” on page 6-6
“Change View Point” on page 6-9
“Change View Convention” on page 6-11

“Display Multiple Screens” on page 6-12

“Toggle Visibility of Frames and Mass Centers” on page 6-15

You can customize the display of Mechanics Explorer. Settings you can
change include:

® Background color

® View point

e View convention

Number of display windows for a model

¢ Vigibility of frames and centers of mass

Change Background Color

To change the background color, use the following procedure. The procedure
uses the sm_four_bar as an example.

1 At the MATLAB command line, enter sm_four_bar.

Note Alternatively, open a SimMechanics model of your choice.

2 In the Simulink Editor window for the model, select Simulation > Update
Diagram.

Configure Visualization Settings

Note Mechanics Explorer opens with a display of your model against the
default grey background.

File Explorer Simulation View Tools Window Help o | A
WE QO X WAIDAH I || R B viewconvention:|zupovTop) ~|| B+ AL |- /e O~

Mechanics Explorer-sm_four_bar =2

= EZ

<= sm_four_bar

'DDD Connector_Link

S Crank_Link

-DDD Crank_Side_Base

-DDD Rocker_Link

-DDD Rocker_Side_Base

Q Mechanism_Configuration

;};; ‘World_Frame

-+ Base_Crank_Revolute
Base_Rocker_Revolute

+ Connector_Rocker_Revolute

-4+ Crank_Connector_Revolute

---J_{"‘. Crank_Base_Transform

---J_{"‘. Rocker_Base_Transform

Connection Frames

1
"
1
0]

K4

-
i
-
i
i
i
i
H
H
H
H
H
H
i

[En I = T e O e OO e W = W = T W e W = B = T = B

AW

|4_4 4_| !- |_> 0% |@‘ 1X —J— ‘TimeD

3 In the Mechanics Explorer toolbar, click the 'a icon.

6-7

6 Visualization and Animation

4 In the Select a Color dialog box, select a color. Click HSV, HSL, RGB, or
CMYK tabs to specify a color in these formats.

X5

A\ Select a Color
 Swatches:| Hsv | HsL | RB | cmvi

Recent:

[240, 240, 240

Preview
n

D Sample Text Sample Text

[QK][Cancel H Reset]

5 Click OK.

6 In the Mechanics Explorer toolbar, click the u icon.

Clicking the " icon saves the current Mechanics Explorer configuration to
the SimMechanics model. If you close the Mechanics Explorer window and
update the model, Mechanics Explorer opens with the new configuration.

Configure Visualization Settings

4\ Mechanics Explorers - Mechanics Explorer-sm_four_bar EI@

File Explorer Simulation View Tools Window Help N AX

B/ 00 K| @FTIHIE|H|F | viewconvention:[ZupevTop) ~ [+ QAL |- $e [O.~

| Mechanics Explorer-sm_four_bar |

f,_- sm_four_bar

---DDD Connector_Link

-5 Crank_Link

---DDD Crank_Side_Base

---DDD Rocker_Link

---DDD Rocker_Side_Base

@; Mechanism_Configuration
;}7; ‘World_Frame

-4+ Base_Crank_Revolute

-4+ Base_Rocker_Revolute

.

-/ Connector_Rocker_Revolute
- 4+ Crank_Connector_Revolute

---,_'.9 Crank_Base_Transform
---,_{" Rocker_Base_Transform

[Ee I I = e W e e W e W = T = T e W = = B e W

~Connection Frames

AW

! 0% ® 1 —|— |Timelo

Change View Point

Mechanics Explorer provides seven view presets that you can use to change
the perspective of a model. Each preset has an icon in the Mechanics Explorer

toolbarmgm@ﬁlﬁa.

6-9

6 Visualization and Animation

Click an icon to select the corresponding view preset. The following table
describes the seven presets in Mechanics Explorer.

View lcon View Name View Description

= Front view Display model ZX plane
with Y axis pointing
into screen

(i Back view Display model ZX plane
with Y axis pointing out
of screen

T Top view Display model XY plane
with Z axis pointing out
of screen.

g Bottom view Display model XY plane
with Z axis pointing
into screen

5 Left view Display model YZ plane
with X axis pointing
into screen

7 Right view Display model YZ plane
with X axis pointing out
of screen

- Isometric view Display model in 3-D

with axes X, Y, and Z at
120° to each other.

The following figure shows the seven view presets in Mechanics Explorer. The
top row shows the following four presets ordered left to right: front, bottom,
top, bottom. The bottom row shows the following three presets ordered left to
right: left, right, isometric.

6-10

Configure Visualization Settings

| Mechanics Explorer-sm_four_bar

"-?3_- sm_four_bar

DDD Connector_Link
- Crank_Link
Hole_Frame
- [H Peg_Frame
([Left_End_Cap
G- Main_Link
[#-[@' Right_Peg
E}-,_'."' Left_Transform
£

£

£

J--,_'.H Right_Transform

i 15 Hole_Frame

#- 1 Peg_Frame
[#-Connection Frames

J---DDD Crank_Side_Base

77 Rocker_Link

J---DDD Rocker_Side_Base

JQ} Mechanism_Configuration
];)7; World_Frame

f- .+ Base_Crank_Revolute

H- .+ Base_Rocker_Revolute
t- .+ Connector_Rocker_Revolute

e =T e W =T == W = T e O =B ==

t- 4+ Crank_Connector_Revolute

o

»

> A

m

AT

L. o

J{

Change View Convention

You can choose from three view conventions:

@‘ i — ‘Time 0

e 7 axis up—displays the model ZX plane in front view

® 7 axis down—displays the model YZ plane in front view

® Y axis up—displays the model XY plane in front view

6-11

6 Visualization and Animation

To select a view convention, click the View convention drop-down menu,

and select one of the three view conventions. The following figure shows a

four-bar model in front view using the three view conventions. The top row
shows view conventions Z up and Z down ordered left to right. The bottom
row shows view convention Y up.

| Mechanics Explorer-sm_four_bar 0 |

2

»

: sm_four_bar

DDD Connector_Link
- Crank_Link
Hole_Frame

- [H Peg_Frame

t- [Left_End_Cap
[Main_Link

i Right_Peg

J--,_'.H Left_Transform
J--,_'.H Right_Transform
i 1 Haole_Frame

#- 1 Peg_Frame
i-Connection Frames
J---DDD Crank_Side_Base
15 Rocker_Link b
J---DDD Rocker_Side_Base I
JQ} Mechanism_Configuration
];)7; World_Frame

f- .+ Base_Crank_Revolute

m

E
[
[
[
[
£
[
£

t- ,+ Base_Rocker_Revolute
t- .+ Connector_Rocker_Revolute

e W =T = W T == W = T e B == O =

t- 4+ Crank_Connector_Revolute
o

AT

F:-a

/] % @‘ x — - ‘Time 0

Display Multiple Screens

You can divide the Mechanics Explorer screen into multiple screens, each with
an independent view of a model. The Mechanics Explorer toolbar provides

6-12

Configure Visualization Settings

:

icons to split the active window into two windows vertically

or horizontally.

Each time you split the active window, you generate two smaller windows.
You can split the active window an arbitrary number of times to generate as
many view screens as you need. The following table describes the screen
split icons.

Icon Icon Description

Split the active screen into four
standard views

Display a single screen

5 Split the active screen vertically into
two screens

n Split the active screen horizontally
into two screens

The following image shows Mechanics Explorer with four standard views,
in single screen mode, with two vertically split screens, and with two
horizontally split screens.

6-13

6 Visualization and Animation

gERa Bl T

ks o\

e 2

6-14

Configure Visualization Settings

Toggle Visibility of Frames and Mass Centers

The Mechanics Explorer provides icons {L' ":; so that you can display and
hide frames and center-of-mass markers.

To toggle frame visibility, click the - icon.

To toggle the visibility of center-of-mass markers, click the ':;' icon.

The following figure shows a four-bar model that displays frames and
center-of-mass markers.

6-15

6 Visualization and Animation

6-16

Configure Visualization Settings

Related
Examples

Concepts

e “Configure Visualization Settings” on page 6-6
e “Rotate, Pan, and Zoom View” on page 6-18
* “Find and Fix Visualization Issues” on page 6-29

® “Visualizing and Inspecting a Model” on page 6-2

“Identifying Assembly Issues” on page 3-25

6-17

6 Visualization and Animation

6-18

Rotate, Pan, and Zoom View

In this section...

“Rotate, Pan, and Zoom Shortcuts” on page 6-18
“Rotate View” on page 6-18
“Pan View” on page 6-19

“Zoom View” on page 6-20

You can rotate, pan, and zoom your model in Mechanics Explorer. To do this,

Iy ~
you use three buttons in the Mechanics Explorer toolbar: ™+ + "']' Select
the button for the task you want to perform. Then, use the mouse to perform
that task. You can also use mouse shortcuts to rotate, pan, and zoom.

Rotate, Pan, and Zoom Shoritcuts

The following table summarizes the mouse shortcuts that you can use to
rotate, pan, and zoom a model.

Function Mouse Shortcut

Rotate Press Scroll Wheel + Move Mouse

Pan Press Scroll Wheel + Shift + Move
Mouse

Zoom Press Scroll Wheel + Ctrl + Move
Mouse

Rotate View

-,
In the Mechanics Explorer tool bar, click the Rotate view button * . In the
visualization pane, click the mouse to set the rotation pivot point. Then, move
the mouse to rotate about that pivot. A rotation icon denotes the position

of the mouse.

Rotate, Pan, and Zoom View

A

If you use a mouse with a scroll wheel, you can also use a shortcut to rotate
your model. Click and hold the scroll wheel while moving the mouse in the
visualization pane. As you move your mouse, the model rotates.

Click + Hold ~ Move Mouse
' o

Pan View

In the Mechanics Explorer tool bar, click the Pan view button + In the
visualization pane, click and move the mouse to pan the model. A pan icon
denotes the position of the mouse.

6-19

6 Visualization and Animation

=
L

A

If you use a mouse with a scroll wheel, you can also use a shortcut to pan your
model. In the visualization pane, click and hold the scroll wheel and press
Shift while moving the mouse. As you move the mouse, the model pans.

Click + Hold Press Mowve Mouse
. sl

+ B8+ &

Zoom View

In the Mechanics Explorer tool bar, click the Zoom in/out button *-l In the
visualization pane, click the mouse in the part that you want to zoom. Then,
move the mouse to zoom that part. Move the mouse up to zoom in or down to
zoom out. A zoom icon denotes the position of the mouse.

6-20

Rotate, Pan, and Zoom View

Related
Examples

Concepts

=
by

A

If you use a mouse with a scroll wheel, you can also use a shortcut to zoom
your model. In the visualization pane, click and hold the scroll wheel and
press Ctrl while moving the mouse. As you move the mouse, the model zooms.
Move the mouse up to zoom in or down to zoom out.

Click + Hold Press Move Mouse
L] L] L]

“Configure Visualization Settings” on page 6-6
“Find and Fix Visualization Issues” on page 6-29
“Record Animation Video” on page 6-22

® “Visualizing and Inspecting a Model” on page 6-2
® “Identifying Assembly Issues” on page 3-25

6-21

6 Visualization and Animation

6-22

Record Animation Video

With Mechanics Explorer, you can record a 3-D animation of your
SimMechanics simulation. You can then play back the animation video
without running the simulation again—or even opening the original model.

To record an animation, Mechanics Explorer provides a record button, f .

Recorded videos are in AVI format. The video playback speed is 30 frames
per second.

Record Video

This example shows how you can record a 3-D animation. The model in this
example is sm_four_bar, which accompanies your SimMechanics installation.

1 At the MATLAB command line, enter sm_four_bar.
2 In the Simulink Editor window, select Simulation > Run.

3 In the Mechanics Explorer window, press the Record button.

Record Animation Video

A\ Mechanics Explorers - Mechanics Explorer-sm_four_bar IEI@
File Explorer Simulation View Tools Window Help LRI
BB 2SR WETD O I || OF) veweomenson{zuparion v]| & B> b A G- S | m e

[Mechanics Explorer-sm_four_bar =]

[Create video of simulation in active viewL

f‘,‘ sm_four_bar

DDD Connector_Link

T Crank_Link

DDD Crank_Side_Base

DDD Rocker_Link

DDD Rocker_Side_Base
--@“5 Mechanism_Configuration
;J;; ‘World_Frame
-4 Base_Crank_Revolute
-4 Base_Rocker Revolute
4 Connector_Rocker Revolute
4 Crank_Connector_Revolute
--,_(‘ Crank_Base Transform
--,_'f‘ Rocker_Base_Transform

--Connection Frames

4
M

s 2

[l 0% ® 1 —}— |Timelo

4 In the Select video file window, specify the name of the file.

5 Press Save.
A new animation window opens when you press Save. The title bar of the

new window provides the recording progress status. When a new window
opens informing you that the recording has finished, click OK

6-23

6 Visualization and Animation

A\ 105 of 10= captured for sm_four_bar |_|_:|_| = |§§_|

4 Message

l./l Video file "S\sm_four_bar.avi" has been successfully created.

T
| -
i

Related e “Adjust Video Playback Speed” on page 6-25
Exqmples ® “Configure Visualization Settings” on page 6-6

e “Rotate, Pan, and Zoom View” on page 6-18

¢ “Find and Fix Visualization Issues” on page 6-29
Concepts ® “Visualizing and Inspecting a Model” on page 6-2

® “Identifying Assembly Issues” on page 3-25

6-24

Adjust Video Playback Speed

Adjust Video Playback Speed

In this section...

“Variable-Step Solvers” on page 6-25
“Fixed-Step Solvers” on page 6-27

SimMechanics animation videos play at a fixed speed of 30 frames per second
(fps), with each frame corresponding to a simulation time step. When the
step size differs from the 1/30 second duration of a video frame, the video
speed differs from the simulation speed. To ensure that the two speeds are
equal, you must adjust the configuration parameters for your model. The
exact approach depends on the type of solver that you select: variable-step
or fixed-step.

Variable-Step Solvers

Variable-step solvers are commonly used in SimMechanics simulations. With
a variable-step solver, the step size can vary between minimum and maximum
values that you specify in your model’s Configuration Parameters menu.
Because each video frame corresponds to a simulation step, a variable step
size can introduce time distortion into the video.

For example, when the step size is larger than 1/30 second, it must shrink
to fit the 1/30 second duration of a video frame, causing the video to appear
faster than the simulation. Similarly, when the step size is smaller than
1/30 second, it must expand to fit the 1/30 second duration of a video frame,
causing the video to appear slower than the simulation.

To avoid time distortion in the video, you must sample the simulation at
regularly spaced intervals. By using a 1/30 second sampling time interval,
you can ensure that the resulting video plays at the simulation speed:

1 On the Simulink menu bar, select Simulation > Model Configuration
Parameters.

2 On the Configuration Parameters tree browser, select Data
Import/Export.

6-25

6 Visualization and Animation

3 In the Output Options drop-down list of the Save options pane, select
Produce specified output only.

4 In Output times, enter (1:N)*dt, replacing N with the number of data
samples, and dt with the sampling time interval in seconds, 1/30. This
array specifies the times at which to record the frames of the video.

In terms of the duration of a simulation 7, the number of samples N equals
T/dt. For example, if the simulation lasts ten seconds (T = 10) and the
sampling time interval is 1/30 second (dt = 1/30), then N = 300. In this case,
the array you enter in Qutput times must be (1:300)*1/30.

6-26

Adjust Video Playback Speed

\.foﬁ Configuration Parameters: sm_four_bar/Configuration (Active) @

Select:

i Solver

~Data Import/Export
- Optimization

+- Diagnostics
“~Hardware Implementation
- Model Referencing
- Simulation Target
v Code Generation
~Simscape
SimMechanics 1G

-~ SimMechanics 2G

A

Load from workspace
[nput: It, ul
[T Tnitial state: |>dnitial

Save to workspace

Time, State, Output

Time: tout Format: Array 7
[[] states: xout Limit data points to last: 1000

Output: yout Decimation: 1

[0 Final states: | xFinal Save complete SimState in final state

Signals

Signal logging: logsout Signal logging format: |ModelDataLogs -

I Configure Signals to Log...

m

Data Store Memory

Data stores: dsmout

Save options

Output options: Produce specified output only ~ | Output times: [D:lf3D:1D[]

[”] save simulation output as single object | out

[T] Record and inspect simulation output

I oK H Cancel H Help H Apply I

If you change the time interval dt in the array from 1/30, the video playback
speed changes accordingly. Changing df to 1/15 causes the resulting video
to play at twice the simulation speed. Similarly, changing dt to 1/60 second
causes the resulting video to play at half the simulation speed.

Fixed-Step Solvers

Fixed-step solvers are less commonly used in SimMechanics simulations.
With a fixed-step solver, the simulation step size remains constant at a value

6-27

6 Visualization and Animation

6-28

Related
Examples

that you specify in your model’s Configuration Parameters menu. Because
the step size is constant, the resulting video displays no time distortion. It
can, however, play at a different speed than the simulation.

To change the playback speed of the video, you must change the step size of
the simulation. Change the step size to 1/30 second to ensure that the video
plays at the same speed as the simulation:

1 On the Simulink menu bar, select Simulation > Model Configuration
Parameters.

2 On the Solver options pane, check that Type is set to Fixed-step.

3 In Fixed-step size (fundamental sample time), enter 1/30.

Changing the step size from 1/30 causes the animation video to play at a
different speed. The effect of changing the step size is similar to the effect of
changing the sampling time interval for a variable-step solver. Changing the
step size to 2/30 causes the resulting video to play at twice the simulation
speed. Similarly, changing the step size to 1/60 causes the resulting video
to play at half the simulation speed.

Note Model dynamics take precedence over video playback considerations.
Select a solver and step size based on the dynamics of your model. Then, if
possible, adjust the time step to control the video playback speed.

® “Record Animation Video” on page 6-22
e “Configure Visualization Settings” on page 6-6
e “Rotate, Pan, and Zoom View” on page 6-18

Find and Fix Visualization Issues

Find and Fix Visualization Issues

In this section...

“Mechanics Explorer Fails to Open” on page 6-29

“Model appears with different orientation in Mechanics Explorer” on page
7-41

“Part appears invisible in Mechanics Explorer” on page 7-43

Under certain conditions, a model that you visualize can behave in unexpected
ways. Some issues that you can encounter while attempting to visualize
a model include:

® Mechanics Explorer fails to open

e Model appears with different orientation in Mechanics Explorer

® Part appears invisible in Mechanics Explorer

Mechanics Explorer Fails to Open

By default, Mechanics Explorer is set to open the first time you update a
model. If a Mechanics Explorer window is already open for your model, the
open window updates the model display. Note, however, that updating a
model does not automatically bring the Mechanics Explorer window to the
front. If the Mechanics Explorer window is hidden during model update, you
must bring that window to the front to see the updated model.

Set Mechanics Explorer to Open on Model Update

If Mechanics Explorer fails to open during model update, check that
Mechanics Explorer is set to open on model update:

1 In the Simulink Editor menu bar, select Simulation > Model
Configuration Parameters.

2 Expand the SimMechanics 2G node.

3 Click Explorer.

6-29

6 Visualization and Animation

6-30

4 Verify that Open Mechanics Explorer on model update or simulation
1s selected.

Model appears with different orientation in
Mechanics Explorer

By default, Mechanics Explorer displays a model with the Z axis of the World
frame pointing up. Using this convention, the default gravity vector [0 O
-9.81] m/s"2 points down, a direction that is practical for most applications.
However, this convention differs from that which CAD platforms commonly
use, Y axis up, causing Mechanics Explorer to display some models sideways.
If this happens, you can manually change the view convention to that used in
the original CAD assembly. The figure shows the default Mechanics Explorer
display of an imported robot arm model.

Find and Fix Visualization Issues

Change View Convention
To change the view convention of a model:

1 In the Mechanics Explorer toolbar, click the View Convention drop-down
menu.

2 Select Y up (ZX Top).

6-31

6 Visualization and Animation

6-32

3 Refresh the Mechanics Explorer display by selecting a view point from the
Mechanics Explorer tool bar.

Mechanics Explorer displays the model using the new view convention.

Part appears invisible in Mechanics Explorer

During CAD import, SimMechanics uses a set of stereolithographic (STL) files
to generate the 3-D surface geometry of each CAD part. If SimMechanics
cannot load the STL file for a part, that part appears invisible in Mechanics
Explorer. This issue does not affect model update or simulation.

The figure shows the Mechanics Explorer display of an imported model
containing an invalid STL file.

Find and Fix Visualization Issues

Correct Visualization Issue

If a part of an imported model appears invisible in Mechanics Explorer:
1 In Mechanics Explorer, identify the name of each invisible part.

2 In the block diagram, open the dialog boxes of the associated Solid blocks.

3 In the Geometry section, check that the name and location of the STL
files are correct.

If either is incorrect, enter the correct information and update the model.

Check that Mechanics Explorer displays the invisible part. If not, check if
the STL files are valid.

6-33

6 Visualization and Animation

6-34

Related
Examples

Concepts

STL File Issues

To visualize a CAD assembly that you import, SimMechanics relies on a set of
STL files that specify the 3-D surface geometry of the CAD parts. Each STL
file specifies the surface geometry of one CAD part as a set of 2-D triangles.
To do this, the STL files contain:

e [X Y Z] coordinates of the triangle vertices

e [XY Z] components of the normal vectors for the triangles.

If an STL file specifies a normal vector with zero length, SimMechanics issues
a warning. The STL file fails to load.

“Configure Visualization Settings” on page 6-6
“Rotate, Pan, and Zoom View” on page 6-18

“Visualizing and Inspecting a Model” on page 6-2
“Identifying Assembly Issues” on page 3-25

CAD Import

About CAD Import

e “CAD Translation” on page 7-2

¢ “CAD Import” on page 7-5

¢ “Install and Register SimMechanics Link Software” on page 7-9
e “SimMechanics Import XML File” on page 7-15

¢ “Import Robot Arm Model” on page 7-27

¢ “Import Stewart Platform Model” on page 7-33

¢ “Find and Fix CAD Import Issues” on page 7-40

7 About CAD Import

CAD Translation

In this section...

“CAD Translation Steps” on page 7-3

“Software Requirements” on page 7-3

You can translate a CAD assembly into a SimMechanics model for simulation
and analysis. This process is called CAD translation. By translating a CAD
assembly into a SimMechanics model, you leverage the strengths of your CAD
platform with the strengths of SimMechanics software. You can modify any
model that you translate—for example, adding actuators and sensors—to

fit the needs of your application. CAD translation is especially useful for
control system design.

CAD Assembly

SimMechanics Model

CAD Translation

CAD Translation Steps

CAD translation is a two-step process. First, you export a CAD assembly

in XML format. Then, you import the XML file into SimMechanics.
SimMechanics uses the XML file to automatically generate a model that
replicates the original CAD assembly. If the CAD assembly contains only
supported constraints, CAD import requires no additional work on your part.
Once SimMechanics generates your model, you are ready to simulate and
analyze that model. The table summarizes the two CAD translation steps.

Translation Step Description

CAD Export Generate XML import file from CAD
assembly

CAD Import Generate SimMechanics model from
import files

You must export a CAD assembly before you import it into SimMechanics.
The schematic shows the CAD translation step sequence. A CAD assembly
is the starting point of CAD translation. Exporting that assembly in XML

format and importing the resulting XML file into SimMechanics produces

an equivalent SimMechanics model.

CAD Assembly @ 0

Generale Generate

Import File SimMechanics Model

Software Requirements

The table provides the software requirements for CAD translation. The
requirements depend on the CAD translation step—export or import. For
example, a CAD platform is a requirement only for CAD export.

7-3

7 About CAD Import

Software Notes CAD Export CAD Import
CAD Platform v
MATLAB Registration as v v

computing server

required
SimMechanics v
SimMechanics v
Link

The software requirements for CAD translation are optimized for cooperation
between CAD and SimMechanics engineers. A CAD engineer can export

the CAD assembly without an active SimMechanics installation. Likewise,

a SimMechanics engineer can import the CAD assembly without an active
CAD platform installation.

¢ “CAD Import” on page 7-5

See Also smimport
Related .
Examples .

[]

[]
Concepts

“Install and Register SimMechanics Link Software” on page 7-9
“Import Robot Arm Model” on page 7-27
“Import Stewart Platform Model” on page 7-33
“Find and Fix CAD Import Issues” on page 7-40

CAD Import

CAD Import

In this section...

“Importing a Model” on page 7-5
“Generating Import Files” on page 7-6

“SimMechanics XML Schema” on page 7-8

CAD Import is the second and final step of CAD translation. During

CAD import, SimMechanics interprets the SimMechanics Import XML file
generated during CAD Export. Then, based on the structure and parameters
that the XML file provides, SimMechanics automatically generates model
that replicates the original CAD assembly.

Importing a Model

CAD Import does not require access to the original CAD assembly or
associated CAD platform. Access to the surface-geometry STL files is not
required for simulation, but it is required for visualization. You can simulate
an imported model that contains no STL files. However, the Mechanics
Explorer visualization utility cannot display a representation of a model

without the STL files.

STL Files

SimMechanics

SimMechanics
Madel

Export
SimMechanics
Import XML

File

In the model, each CAD part maps into a rigid body subsystem. Each
CAD constraint or set of CAD constraints, map into a joint. Block names

7-5

7 About CAD Import

7-6

for SimMechanics subsystems are based on the original CAD parts and
subassemblies which the subsystems represent. SimMechanics appends the
suffix RIGID to the stem of a rigid body name. For example, CAD part base
translates into rigid body subsystem base RIGID. The following figure shows
the imported SimMechanics model of a CAD robot assembly.

World
.—._\. [l]
'Q‘ el ms-’ﬁi[} qrF1 FE i = N = =y LI !
~9)= ©
Transform base 1_RIGID Spherical upperarm_1_RIGID
=0
L Lok L . L
B efB 5 = e 3 gF Fi[E Els_oF B sl
_atl _atl _atl
Revolute1 forearm_1_RIGID Rewolute wrist_1_RIGID Revolute2 grip_1

Modify SimMechanics model to fit the needs of your application.

Generating Import Files

To import a multibody model into SimMechanics, you must first generate the
SimMechanics Import XML file. You can generate this file automatically,
using the SimMechanics Link utility, or manually, using the XML schema
that MathWorks® provides. The method that you use depends on the type of
model that you want to import. The table summarizes the two methods and
their limitations.

CAD Import

Import File Generation Method

Limitations

SimMechanics Link

Works only for CAD assemblies.
CAD assembly must come from one
of three supported CAD platforms.

XML Schema

Requires knowledge of XML file
generation based on XML schema

Generating

Import
Files

SimMechanics
Link

Generate SimMechanics
ML File for CAD
Assamblies

Generate SimMechanics
Import XML File General
Multibody Models

SimMechanics Link is a free utility that MathWorks provides. Use this utility
to generate the SimMechanics Import XML file that you need to import a CAD
assembly into SimMechanics. For more information about SimMechanics
Link , see “Install and Register SimMechanics Link Software” on page 7-9.

7-7

7 About CAD Import

7-8

SimMechanics XML Schema

The XML Schema is a set of files written according to the W3C XML Schema
specification. MathWorks provides these files so that you can generate a
SimMechanics Import XML file manually or using an external application.
Use the XML Schema to generate the SimMechanics Import XML file for a
CAD assembly or other multibody model.

The XSD files describe the elements and attributes that a SimMechanics
Import XML file can contain and the order in which they must appear.
Generating an XML file in accordance with the XML schema ensures that
SimMechanics can successfully import it. Once you have generated the XML
file, validate it against the schema to ensure SimMechanics can import it
without issue.

To access the SimMechanics XML schema, visit the SimMechanics product
website. Follow instructions to download the XSD files.

See Also smimport

Related ® “Install and Register SimMechanics Link Software” on page 7-9
Examples ¢ “Import Robot Arm Model” on page 7-27

¢ “Import Stewart Platform Model” on page 7-33

¢ “Find and Fix CAD Import Issues” on page 7-40
Concepts e “CAD Translation” on page 7-2

http://www.mathworks.com/products/simmechanics/index.html
http://www.mathworks.com/products/simmechanics/index.html

Install and Register SimMechanics™ Link Software

Install and Register SimMechanics Link Software

In this section...

“SimMechanics Link Installation Requirements” on page 7-9

“Download SimMechanics Link Software” on page 7-10

“Install SimMechanics Link Software” on page 7-10

“Register SimMechanics Link Utility with CAD Platform” on page 7-11
“Link External Application to SimMechanics Link Software” on page 7-11
“Register MATLAB as Automation Server” on page 7-11

“Unregister SimMechanics Link Software” on page 7-13

SimMechanics Link Installation Requirements

Before installing the SimMechanics Link utility, check that an active
installation of the following software exists on your computer:

e MATLAB

® Supported CAD platform

MATLAB and SimMechanics Link must belong to the same release. For
example, if your MATLAB release is R2012b, then your SimMechanics Link

release must also be R2012b. Combining different release numbers can cause
installation errors.

SimMechanics Link supports three CAD platforms:

e SolidWorks®

¢ Autodesk Inventor®

e PTC® Creo™ (Pro/ENGINEER®

You can use the SimMechanics Link utility to export a CAD assembly from

any of these CAD platforms. Note that MATLAB, SimMechanics Link, and
your CAD platform must chare the same architecture (e.g. 64-bit).

7-9

7 About CAD Import

Download SimMechanics Link Software
You can download SimMechanics Link software directly from the MathWorks
website:

1 Visit the SimMechanics Link download website at
http://www.mathworks.com/products/simmechanics/download_smlink.html.

2 Select the software version to install.
3 Click Submit.
4 Save the installation files in a convenient folder.

Do not extract the zip file.

Install SimMechanics Link Software
Install SimMechanics Link software from the MATLAB command line:

1 Start MATLAB.

Note You may need administrator privileges to complete the installation.

2 At the MATLAB command line enter:

path(path, '<installation_file_folder>")

replacing <installation_file_ folder> with the path to the folder with
the installation files.

3 At the MATLAB command line, enter:

install_addon('<zip_file_name>.zip')

replacing <zip_file name> with the name of the zip file that you
downloaded (e.g., smlink.r2012b.win64). The command extracts the zip
archive files to the MATLAB root directory.

7-10

http://www.mathworks.com/products/simmechanics/download_smlink.html

Install and Register SimMechanics™ Link Software

Register SimMechanics Link Utility with CAD Platform

Complete the installation by registering your the SimMechanics Link utility
with your CAD platform. The registration procedure makes SimMechanics
Link available in your CAD platform as an Add-In tool. Once you have
completed the linking procedure, you can use the Add-In tool to export a CAD
assembly directly from your CAD platform.

The registration procedure is different for each supported CAD platform. The
following table provides platform-specific registration information. Click

the link that matches your CAD platform, and complete the registration
procedure.

To register with CAD platform... | ...click here

Autodesk Inventor “Register SimMechanics Link with
Inventor®”

PTC Creo (Pro/ENGINEER) “Register SimMechanics Link with
Creo”

SolidWorks “Register SimMechanics Link with
SolidWorks”

Link External Application to SimMechanics Link
Software

You can link an unsupported CAD platform or other external application
to SimMechanics software. For this task, SimMechanics Link provides an
application programming interface (API) with a set of functions that you
can use to create a C/C++ custom export module. For an overview of custom
export using the API, see “Custom Export with SimMechanics Link APT”.

Register MATLAB as Automation Server

Each time you use the SimMechanics Link utility with a CAD platform or
other external application, the utility attempts to connect to MATLAB.

Registration Requirements
Successful connection requires the following to be true:

7-11

7 About CAD Import

e Matching MATLAB and SimMechanics Link release numbers (e.g. both
release numbers R2012b)

e MATLAB registration as automation server.

Enable Automation Server Mode
You can register MATLAB as an automation server in two ways:

Condition Registration Procedure
MATLAB session open in | At the MATLAB command line, enter
desktop mode regmatlabserver.

The command registers the current MATLAB
session as an automation server.

At the MATLAB command line, enter:

enableservice
('AutomationServer',true)

The command enables the current MATLAB
session as an automation server.

MATLAB session not open | At the operating system command prompt,
enter

matlab -automation -desktop

The prompt starts a new MATLAB session in
automation server mode.

At the operating system command prompt,
enter command matlab -regserver.

The command opens a new MATLAB session

in automation server mode. You can close the
MATLAB session.

A single MATLAB automation server registration can be active at a time. If
multiple MATLAB sessions are open in your system, you must first disable
the active registration and then register the desired MATLAB session as an
automation server using the regmatlabserver command.

7-12

Install and Register SimMechanics™ Link Software

Caution If your system does not have an active MATLAB automation server
registration, SimMechanics Link issues a error when it attempts to connect.
In the event of a connection error, check that a MATLAB automation server
is active in your system. If necessary, register MATLAB as an automation
server.

Connection from External Application to MATLAB Automation
Server

Invoking the SimMechanics Link utility from an external application
produces one of the following results:

Condition Required Action Result

No MATLAB session None e New MATLAB

open session opens in
automation server
mode

e SimMechanics Link

connects to MATLAB
automation server
MATLAB server open None e SimMechanics Link
in automation server connects to MATLAB
mode automation server
MATLAB session open | Register MATLAB ® SimMechanics Link
in desktop mode session as automation connects to MATLAB
server. See “Enable automation server

Automation Server
Mode” on page 7-12.

Unregister SimMechanics Link Software

SimMechanics Link contains no uninstaller. If you no longer wish to use the
SimMechanics Link utility in your CAD platform, you can unregister the
utility. The following table provides information on the unlinking procedure
for each CAD platform. Click the link that matches your CAD platform.

7-13

7 About CAD Import

To link CAD platform... «ooclick here

Autodesk Inventor “Register SimMechanics Link with
Inventor”

PTC Creo (Pro/ENGINEER) “Register SimMechanics Link with
Creo”

SolidWorks “Register SimMechanics Link with
SolidWorks”

To register a different version of SimMechanics Link with your CAD platform,
first unregister any currently registered version you may have. Then, register
the desired version. To register and unregister the utility, follow the links
provided in the previous table.

7-14

SimMechanics™ Import XML File

SimMechanics Import XML File

In this section...

“Organization of SimMechanics XML Import File” on page 7-15
“Root Assembly” on page 7-16

“Organization of Assemblies” on page 7-21

“Organization of Parts” on page 7-21

The SimMechanics XML import file specifies the hierarchical structure of a
CAD assembly and the physical parameters that describe each CAD part.
SimMechanics imports the file to automatically generate an equivalent
SimMechanics model with little or no additional work on your part.

Each block in a model that you import has a unique name and a complete set
of parameters. The SimMechanics Import XML file provides the name and
parameters of a block based on the original CAD assembly. Once you have
imported a model, you can modify the name and parameters of a block to fit
your needs. You can also add and remove blocks from the model, or replace
one block with another.

Note The following sections describe the structure and parameters of the
SimMechanics Import XML file using a robot arm CAD assembly as an
example. The actual structure and parameters of your SimMechanics Import
XML file can differ from that shown here.

Organization of SimMechanics XML Import File

CAD assemblies are hierarchical systems: a CAD root assembly contains other
CAD subassemblies, each made of CAD parts. The SimMechanics XML import
file mirrors the hierarchical structure of a CAD assembly. The file organizes
CAD assembly information in the order Root Assembly—Assemblies—Parts.

The following figure shows the SimMechanics XML import file for a CAD

assembly with name robot. Content in sections RootAssembly, Assemblies,
and Parts is removed for clarity.

7-15

7 About CAD Import

<SimMechanicsImportXML version="1.0"
<Created by="" on="04/12/12||12:00:36" using="SimMechanics Link Version 4.0" from="SclidWorks 18.0.0"/>
<ModelUnits mass="kilogram" length="centimeter"/>
<Datalnits mass="kilogram" length="metexr"/>

<RootAssenkbly name="rokot" uid="rokot" wversion="29%1">

</Roothssembly>
<hAssembliesr

</hzzemblies>

<Parts>

</Parts»
</5imMechanicsInport¥ML>

Root Assembly

The section RootAssembly of the SimMechanics XML import file organizes
information into two separate subsections:

® InstanceTree

® Constraints

<RootiAzsenbly name="robot™ uid="robot" wversion="291">
<hzsemblyFile name="robot.SLOASH" type="5clidWorks Assembly™/>
<Instancelree>
«/InstanceTree>
<Constraints>
</Constraints>

</HRoothssembly>

InstanceTree

Each part contains one body-fixed reference frame that represents a
unique set of position and orientation coordinates.InstanceTree defines a
reference frame for each assembly found in the root assembly. One frame
provides an ultimate reference frame with origin coordinates (0,0,0). Rigid

7-16

SimMechanics™ Import XML File

transformations translate and rotate the previous frame in InstanceTree to
obtain the reference frame for another CAD assembly.

Instance sections contain the rigid transformation that defines the reference
frame for a CAD part. The following figure shows an instance section in the
SimMechanics XML import file for a root assembly with name robot.

<Rootissenbly name="robot" uid="rokot" wversion="291">»
<hLssemblyFile name="robot.S5LDASM" type="SolidWorks Assenbly"/>
<Instancelree>
<Instance name="base-1" uid="base-1" grounded="true" entitvyUid="base*:*Default">
<Transform>

<Rotation»l 0 0 0 1 0 0 0 l1</Rotation>
<Translation>0 0 O0</Translation>
</Transform>
</Instance>

The InstanceTree section defines the hierarchical organization of the CAD
assembly. The section organizes CAD assemblies and parts according to
their place in the root assembly hierarchy. The following figure displays a
SimMechanics XML import file for a CAD root assembly with name Robot.
The root assembly contains five assemblies:

® pbase-1

® upperarm-1

e forearm-1

® wrist-1

® grip-1

All assemblies contain a single part, except assembly Grip. The assembly
Grip is a multibody system that connects multiple parts with joints. Grip
contains seven distinct parts:

® metacarples-1

e firstfingerlink-1

e firstfingerlinkL-1

® secondfingerlink-1

7-17

7 About CAD Import

7-18

® secondfingerlink-2
e fingertips-1

e fingertips-2

Instance content is removed for clarity.

<RoothAssembly name="robot" uid="rcbot" wversion="291">
<AggsenblyFile name="robot.SLDASM" type="SolidWorks Assemb

g

<InstanceTree>
<Instance name="base-1" uid="base-1" grounded="true" entityUid="base#®:*Default">
</Instance>
<Instance name="upperarm-1" uid="upperarm-1" entityUid="upperarm#:*Defanlt">
</Instance
<Instance name="forearm-1" uid="forearm-1" entityUid="forearm*:*Default">
</Instance>
<Instance name="wrist-1" uid="wrist-1" entityUid="wrist#®:*Defaultc">
</Instance>
<Instance name="grip-1" uid="grip-1" entityUid=" ">
<Instance name="metacarple=s-1" uid="metacarples-1" grounded="true" entityUid="metacarples¥*:*Defaunlt™>
</Instance>

<Instance name="firstfinge 1" entityJid="firstfingerl

</Instance>
<Instance name="firstfingerl

nkL-1" unid="firstfingerlinklL-1" entityUid="firstfinger

</Instance>
<Instance name="secondfingerlink-1" uid="secondfingerlink-1" entityUid="secondfinger]

</Instance>
<Instance name="secondfingerl

entityUid="secondfinge

</Instance
<Instance name="fingertips-1" uid="

gertips-1" entityUid=" wertips*: *Default">

</Instance>
<Instance name="fingertips-2" uwid="fingertips-2" entityUid="fingertips*:*Default">

</Instance>
</Instance>

1kL*:

nk#*:

k*:

k*:*Default">

*Default">

*Defaunlt">

*Default">

SimMechanics™ Import XML File

Constraints

CAD constraints define how two CAD parts can move relative to each other.
One CAD constraint connects two CAD parts. Each CAD constraint specifies
the mechanical degrees of freedom present between two CAD parts. Two CAD
parts can translate along, and rotate about, up to three mutually orthogonal
axes.

During CAD import, SimMechanics translates the CAD constraints into
SimMechanics joints. Most CAD constraints have a SimMechanics equivalent,
but the equivalence may not be a one-to-one-correspondence. A single
SimMechanics joint may require a combination of multiple CAD constraints
providing the same degrees of freedom.

Note Not all CAD constraints have a SimMechanics equivalent. CAD gear
constraints are one example. You cannot translate a CAD gear constraint into
SimMechanics Second Generation models.

The Constraints section specifies the position, orientation, and type of joint
that connects each pair of CAD assemblies. Two constraints specify one joint.
The following figure shows the constraints section of the SimMechanics XML
import file for a joint between two CAD parts with names upperarm-1 and
forearm-1. In the figure, two constraints define a revolute joint that connects
the two CAD parts: Concentric and Coincident. Each constraint specifies
the position and orientation of the revolute joint relative to the reference
frame for each CAD part.

7-19

7 About CAD Import

<Constraints>
<Concentric name="Concentric2™>

<ConstraintGeometry geomlype="cylinder">

<InstancePath>
Uidrupperarm—1«/Tid>

</In=ztancePfath>
<Position>0.10033 -0.0449642 0</Position>
<Bxis>0 1 1.6691le-0l6</Axis>

< /ConstraintGeometrys>

<ConstraintGeometry geomlype="cylinder">
<InstancePath>
<Uidsrforearm-1<,/TUid>
</InstancePath>

“<Position>-0.01651 -0.01651 O</Position>
Chwi=z»0 1 O« /Lxi=s>
< /ConstraintGeometry>
< /Concentric>
<Coincident name="Coincident3™»>
<ConstraintGeometry geomlype="plane">
<InstancePath
<UJidrupperarm-1</UJid>
</InstancePath>
<Position>0 -0.001016 O</Position>
<hxis=x0 -1 O</hxis>
< /ConstraintEFeometry>
<ConstraintGeometry geomlype="plane"»
<InstancePath
<Uidxforearm-1<,/Uid>
</InstanceFath>
<Pogition>0 0 0</Position>
thuis>D 1 O</Luxis>
</ConstraintGeometry>
</Coincident>

7-20

SimMechanics™ Import XML File

Organization of Assemblies

The Assemblies section provides the same information present in
RootAssembly, but with a local non-inertial reference frame acting as the
ultimate reference frame. An InstanceTree section assigns a local reference
frame to each part in an assembly. Each local reference frame appears

in a separate Instance subsection. In the Instance subsection, a rigid
transformation rotates and translates a parent frame to obtain the new local
reference frame.

A Constraints section specifies the kinematic constraints between two parts.
The set of constraints between two parts define the kinematic degrees of
freedom between them, and are equivalent to SimMechanics joints. During
CAD import, SimMechanics interprets each set of CAD constraints, and
replaces them with the appropriate set of joints.

Organization of Parts

Part Names

Each part receives a unique name. By default, part names originate from
the part file names. You can change a part name in SimMechanics, after
CAD import, or in the SimMechanics XML import file, before CAD import.
The following figure displays the part name section of the SimMechanics
XML import file. Colored Boxes highlight part and source file identification
information.

7-21

7 About CAD Import

| <Part name="wrist" uid="wristc*:*Default"” version="323">

<ModelUnits mass="kilogram" ;e:gth=”ce:t;mete:"ﬁﬂ

|<PartFile name="wrizt.SLDPRT" type="5clidWorks Part"/> |

<MassPropertiess>
<Mass>0.151682</Mass>
<Center0OfMass>—0.00457306 3.6667e-009 2.08473e-009</CenterCfMass>
<Inertia»2.71068e-005 4.63034e-005 3.87938e-005 1.54966e-011 -5.65388e-012 -4.38201e-012</Inercia>

</MassProperties>

<GeometryFile name="wrist Default sldprt.S5TL" type="S5TIL"/>

<VisunalProperties>
<Ambient r="1" g="0.T788235" b="0.576471" a="1"/>
<Diffuse r="1" g="0. 35" ph="0.576471" a="1"/>
<Specular r="1" g="0.788235" b="0.5T7&471" a="1"/>
<Emisszive r="0" g="0" h="0" a="iv/s

<Shininess»0.3125</8hininess>
</VisualProperties>
</Part>

Note SimMechanics represents a CAD part as a single rigid body subsystem.
A rigid body subsystem inherits its name from the corresponding CAD part.

Physical Units

The SimMechanics XML input file defines the physical units used to resolve
the values of inertial parameters. Units originate from the exported CAD
assembly file. You can update the physical units in SimMechanics, after
CAD import, or in the SimMechanics XML import file, before CAD import.
The following figure highlights the physical units used to resolve the inertial
properties of CAD part with name Wrist.

7-22

SimMechanics™ Import XML File

<Part name="wrist" uid="wristc*:*Default"” version="323">

<ModelUnits mass="kilogram" ;e:gth=”ce:t;mete:"ﬁﬂ
<PartFile name="wris=st.SLDPRT" type="S5clidWorks Part"/>

<MassPropertiess>
<Mass>0.151682</Mass>
<Center0OfMass>—0.00457306 3.6667e-009 2.08473e-009</CenterCfMass>
<Inertia»2.71068e-005 4.63034e-005 3.87938e-005 1.54966e-011 -5.65388e-012 -4.38201e-012</Inercia>

</MassProperties>

<GeometryFile name="wrist Default sldprt.S5TL" type="S5TIL"/>

<VisunalProperties>
<Bmbient r="1" 235" L="0.5764T1" a="1"/>
<Diffuse r="1" 35" b="0.576471" a="1"/>
<Specular 1™ g="0.788235" b="0.5T76471" a="1"/>

<Emissive r="0" g="Q" b="0" a="1"/>
<Shininess»0.3125</8hininess>
</VisualProperties>
</Part>

Solid Parameters
Solid parameters include inertia and graphic properties. Inertia governs the

dynamic response of the solid to an applied force or torque. The SimMechanics
XML import file specifies the following inertial parameters:

® Mass

¢ Center of mass

¢ Moments and products of inertia

The following figure displays the solid parameters section of the SimMechanics

XML import file for a CAD part with name Wrist. A box encloses the inertial
properties of the CAD part.

7-23

7 About CAD Import

<Part name="wrist" uid="wristc*:*Default"” version="323">
<ModelUnits mass="kilogram" ;e:gth=”ce:t;mete:"ﬁﬂ

<PartFile name="wris=st.SLDPRT" type="S5clidWorks Part"/>

<MassPropertiess>
<Mass>0.151682</Mass>
<Center0OfMass>—0.00457306 3.6667e-009 2.08473e-009</CenterCfMass>
<Inertia»2.71062e-005 4.63034e-005 3.87938e-005 1.54966e-011 -5.65388e-012 -4.38201e-012</Inercial
</MassProperties>
<GeometryFile name="wrist Default sldprt.S5TL" type="S5TIL"/>
<VisunalProperties>

<Ambient r="1" g="0.788235" b="0.576471" a="1"/>
<Diffuse r="1" g="0 235" .5T764T71" a="1"/>
<Specular r="1" g="0.788235" b="0.576471" a="1"/>
<Emissive r="0" g="0" b="0" a="1n/>

<Shininess»0.3125</8hininess>
</VisualProperties>
</Part>

Graphic properties govern the visual representation of the solid in Mechanics
Explorer. Properties include color and shininess. The following table describes
the graphic properties present in the SimMechanics XML import file.

Graphic Property Type Description

Ambient Color RGBA vector Color of light that hits
the solid surface

Diffuse Color RGBA vector Color of the solid
surface in pure white
light

Specular Color RGBA vector Color of specular

reflection from the
solid surface

Emissive Color RGBA vector Color of solid
self-illumination

Shininess Scalar Intensity of specular
highlights from the
solid surface

The following figure highlights the graphic properties section of the
SimMechanics XML import file.

7-24

SimMechanics™ Import XML File

<Part name="wrist" uid="wristc*:*Default"” version="323">
<ModelUnits mass="kilogram" ;e:gth=”ce:t;mete:"ﬁﬂ
<PartFile name="wris=st.SLDPRT" type="S5clidWorks Part"/>
<MassPropertiess>
<Mass>0.151682</Mass>
<CenterCfMass>»>—0.00457306 3.6667e-009 2.08473e-009</CenterCfMass>
<Inertia»2.71068e-005 4.63034e-005 3.87938e-005 1.54966e-011 -5.65388e-012 -4.38201e-012</Inercia>
</MassProperties>
<GeometryFile name="wrist Default sldprt.S5TL" type="S5TIL"/>

<VisunalProperties>

<Ambient r="1" g="0.T788235" b="0.576471" a="1"/>
35" b="0.576471" a="1"/>
788235" b="0.576471" a="1"/>
<Emissive r="0" g="Q" b="0" a="iv/>

<Diffuse r="1" g="

<Specular r="1" g="0.

<Shininess»0.3125</8hininess>

</VisualProperties>
</Part>

Geometry File References

A set of STL files specifies the 3-D geometry of the solid surface for each CAD
part. STL files specify only geometry, without reference to other graphic
properties, like color. The SimMechanics XML import file specifies a single
STL geometry file for each part in the CAD assembly. The following figure
highlights the geometry file reference in the SimMechanics XML input file
for a part with name Wrist.

<Part name="wrist" uid="wristc*:*Default"” version="323">
<ModelUnits mass="kilogram" ;e:gth=”ce:t;mete:"ﬁﬂ
<PartFile name="wris=st.SLDPRT" type="S5clidWorks Part"/>
<MassPropertiess>
<Mass>0.151682</Mass>
<CenterCfMass>»>—0.00457306 3.6667e-009 2.08473e-009</CenterCfMass>
<Inertia»2.71068e-005 4.63034e-005 3.87938e-005 1.54966e-011 -5.65388e-012 -4.38201e-012</Inercia>
</MassProperties>

<GeometryFile name="wrist Default sldprt.S5TL" cype="STL" />

<VisunalProperties>
<Ambient r="1" g="0.T788235" b="0.576471" a="1"/>
<Diffuse r="1" g="0 35" ph="0.576471" a="1"/>
235" pB="0.5TE471" a="in/>
<Emissive r="0" g="Q" b="0" a="iv/>

<Specular r="1" g="0.
<Shininess»0.3125</8hininess>

</VisualProperties>
</Part>

See Also smimport

7-25

7 About CAD Import

7-26

Related
Examples

Concepts

“Install and Register SimMechanics Link Software” on page 7-9
“Import Robot Arm Model” on page 7-27

“Import Stewart Platform Model” on page 7-33

“Find and Fix CAD Import Issues” on page 7-40

“CAD Translation” on page 7-2

¢ “CAD Import” on page 7-5

Import Robot Arm Model

Import Robot Arm Model

In this section...

“Check Import Files” on page 7-28
“Import Robot Assembly” on page 7-29

“Visualize and Simulate Robot Assembly” on page 7-30

In this example, you import a CAD assembly with name robot into
SimMechanics. SimMechanics provides the smimport command so that you
can import a CAD assembly. The command is the only SimMechanics tool you
need to import a CAD assembly. The CAD import procedure is the same

for all CAD platforms.

Note This example uses an XML file and a set of STL files that are present
in your SimMechanics installation. You can export the XML and STL files
directly from a supported CAD platform, but the names of the files may differ
from the example.

The following figure shows the original CAD assembly inside the SolidWorks
CAD platform.

7-27

7 About CAD Import

e » QaYm@E J-60-@ 8- 0O- - 8%

(¥~)

@ robot (Default<<Default>_Appe —
[]-- Annotations @
Sensors a
----- Q Front E
..... & Top 1Sl
..... %) Right @
..... 1, Origin

-8 (f) base<1> (Default<<Defar ¢

[j---% (-) upperarm<1> (Default< < =

[j---% (-) forearm=1> (Default<<Dh ﬁ

(- () wrist<1> (Default<<Defal

[]--é (-] grip<1> (Default<<Defau

[]--@@ MateGroupl

Y

A

b 1} H *lsometric

Check Import Files

Before you import the sm_robot CAD assembly, check that the import files
exist. The import files include one SimMechanics Import XML file and a set of
STL files that specify the geometry of all CAD parts.

7-28

Import Robot Arm Model

1 At the MATLAB command line, enter the following command to change
the current working directory to the subdirectory that contains the robot
example files:

cd(fullfile(matlabroot, 'toolbox', 'physmod', 'sm', ‘smdemos’,
"import', 'robot'))

2 At the MATLAB command line, enter 1s or dir to list all files in the
\robot directory.

3 Check that the directory contains XML file sm_robot.xml and a set of STL

files.

Import Robot Assembly
Once you have verified that all required files exist, proceed to import the
assembly.

1 At the MATLAB command line, enter smimport('sm_robot.xml').

2 Confirm that SimMechanics opens a new model with name sm_robot.

S— e e
File Edit Wiew Display Diagram Simulation Analysis Code Tools Help
-8 a = M= CY RONORMET @&~
sm_robot
® |[%a|sm_robot » -
@
E
=
=]
’JF FL‘ '_JE '::L' '_IF' FL‘ '_]E }"L' ’JF' FL‘ '_JE }r:l“ '_IF F'L‘ "]E }L' F
gy & i & -
base 1_RIGID Spherical upperam_1_RIGID Revolute! forearm_1_RIGID Revolute wrist_1_RIGID Revolute? grip_1

» |y il
100% oded5

7-29

7 About CAD Import

7-30

Note SimMechanics automatically generates the new model without
extra input on your part. Review the model and check for errors and
inconsistencies in the block diagram.

3 In the Simulink Editor window that contains the model, select File > Save

As.

4 In the Save As dialog box, enter the desired file name and select a

convenient directory in which store the model file.

Visualize and Simulate Robot Assembly

In the Simulink Editor window that contains the robot model, select
Simulation > Update Diagram or press Ctrl+D.

Note When you update the diagram, SimMechanics automatically updates
the model display in Mechanics Explorer. SimMechanics relies on the set
of STL files to represent the 3-D geometry of each CAD part. If the files
are not available, SimMechanics still generates the model, but Mechanics
Explorer cannot display the assembly.

In the Mechanics Explorer toolbar, set View Convention to Y up (XY
Front).

Note Most CAD systems use a Y up default view convention. The
convention differs from the Mechanics Explorer default setting, Z up.
Selecting the Y up view convention causes Mechanics Explorer to display
the assembly with the same orientation used in the CAD platforms.

3 In the toolbar, click the icon for the desired viewpoint.

Import Robot Arm Model

Note Selecting the Y up view convention does not affect the Mechanics
Explorer display until you click a view point. You have the choice between
seven standard viewpoints: front, back, top, down, left, right, and isometric.
Once you select a view point, you can rotate, pan, and zoom to adjust the
display of your model. For more information, see:

e “Configure Visualization Settings” on page 6-6

e “Rotate, Pan, and Zoom View” on page 6-18

4 Confirm that a Mechanics Explorer window opens with a static display of
the robot assembly.

[Mechanics Explorer-sm_robot_ %

09_- sm_robot

T base 1_RIGID
- forearm_1_RIGID
- grip 1
I DDD upperarm_1_RIGID
57 wrist_1_RIGID
24 MachineEnvironment
s World
-+ Revolute

o+ Revolutel

+ Revolute2

ﬁ Spherical

,1.7r Transform
Connection Frames

aw

» o @ x—|tmep |

7-31

7 About CAD Import

5 In the Simulink Editor window for the model, select Simulation > Run or
press Ctrl+T to simulate the model.

Tip The model lacks actuation inputs. When you simulate the model, the
robot arm moves strictly due to gravity effects. You can change the gravity
specification in the Mechanism Configuration block.

You can add actuation inputs to the model. Add a block from the Forces &
Torques library to actuate a rigid body. Select an actuation mode in the model
joint blocks to actuate a joint.

See Also smimport

Related ¢ “Install and Register SimMechanics Link Software” on page 7-9
Examples e “Import Stewart Platform Model” on page 7-33
¢ “Find and Fix CAD Import Issues” on page 7-40

Concepts e “CAD Translation” on page 7-2
e “CAD Import” on page 7-5

7-32

Import Stewart Platform Model

Import Stewart Platform Model

In this section...

“Check Import Files” on page 7-34
“Import Model” on page 7-35

“Visualize and Simulate Robot Assembly” on page 7-36

You can import a CAD assembly into a SimMechanics model. To do this, you
use the SimMechanics command smimport. In this example, you import the
CAD assembly for a Stewart platform. All required files are provided with
your SimMechanics installation.

7-33

7 About CAD Import

Check Import Files

To import the CAD assembly, you must have access to the SimMechanics
Import XML and STL files for this assembly. Check that you have these
files before proceeding.

1 Navigate to directory

7-34

Import Stewart Platform Model

<matlabroot>/toolbox/physmod/sm/smdemos/...

...import/stewart_platform

2 Check that the following files exist.

File Quantity Description
SimMechanics Import | One Provides model
XML structure and
parameters
STL Multiple Provides part

geometry

Import Model

If you have access to the import files, you can import the model. To do this,
at the MATLAB command line enter smimport('stewart_platform.xml').
SimMechanics automatically generates a Stewart platform model. This model
replicates the original CAD assembly.

7-35

7 About CAD Import

7-36

Waorld

[
[

EHF A

[

El} Bfﬂ
= i

Revolutes Actuatordssme_2 Revolute !

[

EI)I:' EHF FI[gle jﬁ
& -

Revolute4 ActuatorAssmS_2 Revolute10

fixp=10

gle)4 E! EF F[E ElB f E
o -

= Revolute3 ActuatorAssmd_2 Revoluted
i Fa[3 ' ' B o
P FE -
gs 7RBE—EFs r[E E—
Vs F1[5 = F2
Transform FIE hy o
BaseRingAssembly_1_RIGID B } E E|F Fi[3 ElB } = i

—& A . TopPlate 1_RIGID

Revolute2 ActuatorAssm3_2 Revoluted

L]
[

EF FE

L]
i

a/} a/}

Revolute1 ActuatorAssmz_2 Revolute?

[

8 of gr e Jf
& &

Revolute ActuatorAssmi1_2 Revolute

Visualize and Simulate Robot Assembly

You can now simulate the model that you imported. On the Simulink tool bar,
click the Run button. Alternatively, press Ctrl+T. Mechanics Explorer opens
with a dynamic display of your model.

Import Stewart Platform Model

k.

By default, Mechanics Explorer uses a Z axis up view convention. This
convention differs from that which most CAD platforms use—Y axis up. The
different view conventions cause the Stewart platform to appear sideways
in the visualization pane. To fix this issue, change the Mechanics Explorer
view convention to Y axis up:

® On the Mechanics Explorer tool bar, in the View Convention drop-down
list, select Y Up (XY Front).

To refresh the visualization pane using the new view convention, on the
Mechanics Explorer tool bar, click any standard view button, e.g., Isometric
View.

7-37

7 About CAD Import

L3

Tip Actuate the stewart_platform model with blocks from the Forces and
Torques library. Then, simulate the model and analyze its dynamic behavior
in Mechanics Explorer.

7-38

Import Stewart Platform Model

See Also smimport

Related ® “Install and Register SimMechanics Link Software” on page 7-9
Exqmples ¢ “Import Robot Arm Model” on page 7-27
¢ “Find and Fix CAD Import Issues” on page 7-40

Concepts e “CAD Translation” on page 7-2
® “CAD Import” on page 7-5

7-39

7 About CAD Import

Find and Fix CAD Import Issues

7-40

In this section...

“Model replaces certain CAD constraints with rigid connections” on page
7-40

“Model appears with different orientation in Mechanics Explorer” on page
7-41

“Part appears invisible in Mechanics Explorer” on page 7-43

Under certain conditions, a model that you import can behave in unexpected
ways. Some issues that you can encounter while importing a model include:

® Model replaces certain CAD constraints with rigid connections
e Model appears with different orientation in Mechanics Explorer

® Part appears invisible in Mechanics Explorer

In this section, learn what causes these issues and, if possible, what
approaches you can take to correct them.

Model replaces certain CAD constraints with rigid
connections

SimMechanics supports most, but not all, CAD constraints. If you import a
CAD assembly with a CAD constraint that SimMechanics does not support,
SimMechanics issues a warning message and automatically replaces that
constraint with a rigid connection.

The figure shows the imported model of a CAD assembly that contains an
unsupported gear constraint. Because SimMechanics does not support that
particular gear constraint, it replaces it with a frame line. The frame line
represents a rigid connection.

Find and Fix CAD Import Issues

T
World]Ir
—E1E_o F[3
Ll
Revolutel
s ¥ ; gear2 2 RIGID
\ F E—
'Q -3 s “TE—gl e
—~9 = FE—
Transform Base 2 RIGID
L
F=0 —ElE_ o F[S
. gearl_2 RIGID
Revolute

Identify and Change Automatic Rigid Connections

The warning message 1dentifies the blocks and ports that connect to the
unsupported constraint. Use this information to identify the new rigid
connection in the model. Then, determine if any combination of SimMechanics
joint, gear, or constraint blocks adequately replaces the unsupported
constraint. If so, replace that rigid connection. Run the simulation to check
that the model behaves as you expect.

Model appears with different orientation in
Mechanics Explorer

By default, Mechanics Explorer displays a model with the Z axis of the World
frame pointing up. Using this convention, the default gravity vector [0 O
-9.81] m/s"2 points down, a direction that is practical for most applications.
However, this convention differs from that which CAD platforms commonly
use, Y axis up, causing Mechanics Explorer to display some models sideways.
If this happens, you can manually change the view convention to that used in
the original CAD assembly. The figure shows the default Mechanics Explorer
display of an imported robot arm model.

7-41

7 About CAD Import

Change View Convention
To change the view convention of a model:

1 In the Mechanics Explorer toolbar, click the View Convention drop-down
menu.

2 Select Y up (ZX Top).

7-42

Find and Fix CAD Import Issues

3 Refresh the Mechanics Explorer display by selecting a view point from the
Mechanics Explorer tool bar.

Mechanics Explorer displays the model using the new view convention.

Part appears invisible in Mechanics Explorer

During CAD import, SimMechanics uses a set of stereolithographic (STL) files
to generate the 3-D surface geometry of each CAD part. If SimMechanics
cannot load the STL file for a part, that part appears invisible in Mechanics
Explorer. This issue does not affect model update or simulation.

The figure shows the Mechanics Explorer display of an imported model
containing an invalid STL file.

7-43

7 About CAD Import

7-44

Correct Visualization Issue

If a part of an imported model appears invisible in Mechanics Explorer:
1 In Mechanics Explorer, identify the name of each invisible part.

2 In the block diagram, open the dialog boxes of the associated Solid blocks.

3 In the Geometry section, check that the name and location of the STL
files are correct.

If either is incorrect, enter the correct information and update the model.

Check that Mechanics Explorer displays the invisible part. If not, check if
the STL files are valid.

Find and Fix CAD Import Issues

STL File Issues

To visualize a CAD assembly that you import, SimMechanics relies on a set of
STL files that specify the 3-D surface geometry of the CAD parts. Each STL
file specifies the surface geometry of one CAD part as a set of 2-D triangles.
To do this, the STL files contain:

e [X Y Z] coordinates of the triangle vertices

e [XY Z] components of the normal vectors for the triangles.

If an STL file specifies a normal vector with zero length, SimMechanics issues
a warning. The STL file fails to load.

See Also smimport

Related ® “Install and Register SimMechanics Link Software” on page 7-9
Examples * “Import Robot Arm Model” on page 7-27
e “Import Stewart Platform Model” on page 7-33

Concepts e “CAD Translation” on page 7-2
¢ “CAD Import” on page 7-5

7-45

7 About CAD Import

7-46

Deployment

Code Generation

8 Code Generation

About Code Generation

In this section...

“Simulation Accelerator Modes” on page 8-3

“Model Deployment” on page 8-3

SimMechanics supports code generation with Simulink Coder™. You can
generate C/C++ code from a SimMechanics model to accelerate simulation
or to deploy a model.

Generate
Code
Ta..,

Accelerate
Simulation
With.

Rapid Hardware -
Accelerator Accelerator Rapid

Mode Mode Lg:]p Prototyping

Software

In
Loop

8-2

About Code Generation

Simulation Accelerator Modes

Simulink can generate C/C++ executable code to shorten simulation time.
Two simulation modes generate code:

e Accelerator

e Rapid Accelerator

SimMechanics supports the two accelerator modes. You can access the
simulation accelerator modes in the Simulink Editor window for your model.
Click Simulation > Mode, and select Accelerator or Rapid Accelerator.
Accelerator modes do not require additional Simulink code generation
products.

Note Simulation accelerator modes do not support model visualization.
When you simulate a SimMechanics model in Accelerator or Rapid
Accelerator modes, Mechanics Explorer does not open with a 3-D display of
your model.

Model Deployment

With Simulink Coder, you can generate standalone C/C++ code for
deployment outside the Simulink environment. The code replicates the source
SimMechanics model. You can use the stand-alone code for applications that
include:

¢ Hardware-In-Loop (HIL) testing

® Software-In-Loop (SIL) testing

¢ Rapid prototyping

Note SimMechanics supports, but does not perform, code generation for
model deployment. Code generation for model deployment requires the
Simulink Coder product.

8-3

8 Code Generation

Related e “Configure Four-Bar Model for Code Generation” on page 8-5
Examples ® “Configure Model for Rapid Acceleration Mode” on page 8-8
* “Find and Fix Code Generation Issues” on page 8-12

Configure Four-Bar Model for Code Generation

Configure Four-Bar Model for Code Generation

You can generate code from a SimMechanics model for deployment outside
the MATLAB environment. This example shows how to configure a four-bar
model for code generation using a variable-step solver with the objective of
execution efficiency. The example uses the default Simulink solver ode45
(Dormand-Prince).

The four-bar model is present in your SimMechanics installation. To open the

model, at the MATLAB command line type sm_four_bar. A new Simulink
Editor window opens with the block diagram of the four-bar model.

8-5

8 Code Generation

-

'bism_fuur_bar ol = | ==
File Edit View Display Diagram Simulation Analysis Code Tools Help
- | v == * |10 MNormal - - | e w
sm_four_bar
® Esm_four_bar -
&
- [Jk . ! f- I
= & A é
Crank-Connactor Connecior-Rodier
Revolute Revolute
Connecior
Lirk

‘Crank

: Rodcer

| Link Lirk

Assembling Parts into a Four Bar Mechanism

Simple four bar mechanism [orank-rocker type) mowving from
an iniial state under the influence of gravity. The links are
reused from the sm_compound body example.

“ | | BaseCrark Mechanis m C onfiguration Solver Config
“) | Rewoiute =
% o
7 H
= 17 [s Trm
Crank Base 0 Rodker Base
Cramk Side Transform = Transform Rooker Side
Bae <, World Frame Base
>
Ready 100% oded5

Configure Model

To configure the model for code generation:

1 In the Simulink Editor window for your model, select Simulation > Model
Configuration Parameters.

2 In the Model Configuration Parameters dialog box, select Code
Generation.

Configure Four-Bar Model for Code Generation

3 In Target Selection, enter rsim.tlc.

Note You must use the rsim.tlc target each time you use a variable-step
solver. You can change the solver type in the Solver section of the Model
Configuration Parameters window.

4 In Code Generation Advisor, select Execution Efficiency.
5 Click Apply.

6 To generate C code for your model, click Build.

Related ® “Configure Model for Rapid Acceleration Mode” on page 8-8
Exqmples * “Find and Fix Code Generation Issues” on page 8-12
Concepts ® “About Code Generation” on page 8-2

8 Code Generation

Configure Model for Rapid Acceleration Mode

In this section...

“Model Overview” on page 8-8

“Configure Model” on page 8-9

Model Overview

You can run a SimMechanics model in Accelerator and Rapid Accelerator
modes. When you select an accelerator mode, SimMechanics generates
executable code that accelerates the model simulation. This example shows
how to configure a four-bar model for Rapid Accelerator simulation mode. The
simulation uses the default Simulink solver ode45 (Dormand-Prince).

The four-bar model is present in your SimMechanics installation. To open the

model, at the MATLAB command line type sm_four_bar. A new Simulink
Editor window opens with the block diagram of the four-bar model.

8-8

Configure Model for Rapid Acceleration Mode

-

*ﬁ sm_four_bar = =N
File Edit View Display Diagram Simulation Analysis Code Tools Help
- * |10 Mormal - |
sm_four_bar
® Esm_four_bar -
E3 7 7
e o FL T aat y = S
= o o]
Crank-Connector Connecior-Roder
Revoluts Revolute
Connecior
Lirk
‘Crark
Rodk
| Link Li:
Assembling Parts into a Four Bar Mechanism
Simple four bar mechanism [orank-rocker type) mowving from
an iniial state under the influence of gravity. The links are
reused from the sm_compound body example.
L8}
“ | | Bececrark Mechanis m € orfiguration Solver Canfig I ,&
g/ |Rewite PN BeseRodker|]
) \"\5u =0 Revolute %?)
w
7 7 r.|_¢
- " w
I SERE: 3
)= -
Crank Base 0 Rodker Base Rocker
el o Tramsform TE Transform Rocker Side Position E
Bae <, World Frame Base Scope
»
Ready 100% oded5

Configure Model

To configure the model for Rapid Acceleration simulation mode, follow these

steps:

1 In the Simulink Editor window for your model, select Simulation.

2 In the drop-down menu, select Mode > Rapid Accelerator.

8-9

8 Code Generation

8-10

3 Select Simulation > Model Configuration Parameters.

4 In Code Generation, under System target file, enter rsim.tlc.

Note You must use the rsim.tlc target each time you generate code
with a variable-step solver. Both Accelerator and Rapid Accelerator modes
generate executable code that requires the rsim.tlc target to be used
with variable-step solvers.

5 Expand the SimMechanics 2G node.
6 Select Explorer.

7 Clear the Open Mechanics Explorer on model update or simulation
check box.

Note Clearing the Open Mechanics Explorer on model update or
simulation check box disables visualization with Mechanics Explorer.
Disabling visualization prevents SimMechanics from issuing a warning
message when you simulate a model in Accelerator or Rapid Accelerator
mode.

8 Press Ctrl+T to simulate the model.

Note The Rapid Accelerator mode incurs an initial time cost to generate
the executable code. Once the code is generated, the simulation proceeds
more rapidly. Rapid Accelerator mode is suggested for large or complex
SimMechanics models with long simulation times.

The Rapid Accelerator mode does not support visualization. Mechanics
Explorer does not open, and you can not view a dynamic simulation of the
model. All other simulation capabilities remain functional, including graphics
and scopes.

Configure Model for Rapid Acceleration Mode

Related e “Configure Four-Bar Model for Code Generation” on page 8-5
Exqmples ¢ “Find and Fix Code Generation Issues” on page 8-12
Concepts ® “About Code Generation” on page 8-2

8-11

8 Code Generation

Find and Fix Code Generation Issues

In this section...

“Variable step Simulink solver requires rsim.tlc target” on page 8-12
“Simulink solver must be continuous” on page 8-13

“SimMechanics does not support visualization in accelerator mode” on page
8-13

“SimMechanics Does Not Support Run-Time Parameters” on page 8-14

SimMechanics supports code generation using Simulink Coder. However,
certain guidelines and limitations apply. These include:

® Variable step Simulink solver requires rsim.tlc target.

¢ Simulink solver must be continuous.

¢ SimMechanics does not support visualization in accelerator mode.

¢ SimMechanics does not support run-time parameters.

Note To generate code for a SimMechanics model, you must have an active
Simulink Coder installation.

Variable step Simulink solver requires rsim.tlc
target

Code generation is compatible with fixed- and variable-step solvers. If you
select a variable-step solver, you must specify system target file rsim.tlc. To
specify the rsim.tlc system target file, follow these steps:

1 In the Simulink Editor window for your model, select Simulation > Model
Configuration Parameters.

2 In the left pane of the Model Configuration Parameters dialog box,
select Code Generation.

3 In System target file, enter rsim.tlc.

8-12

Find and Fix Code Generation Issues

4 Click Apply.

5 Click Build to generate code for the active model.

Simulink solver must be continuous

Both fixed- and variable-step solvers can be continuous or discrete.
Generating code from a SimMechanics model requires a continuous solver.
SimMechanics blocks use continuous time samples, and are incompatible
with discrete solvers. If you attempt to generate code with a discrete solver,
Simulink Coder issues an error.

If you receive an error stating that SimMechanics does not support a discrete
solver, select a continuous Simulink solver. To change the Simulink solver,
follow these steps:

1 In the Simulink Editor window for your model, select Simulation > Model
Configuration Parameters.

2 In Solver, under Solver options, click Solver.

3 In the drop-down menu, select any solver with the exception of discrete
(no continuous states).

SimMechanics does not support visualization in
accelerator mode

SimMechanics supports Accelerator and Rapid Accelerator simulation modes.
Selecting an accelerator mode generates executable code that shortens the
time required to run a simulation. However, the simulation produces no
visualization output. Mechanics Explorer does not open, and you cannot
visualize the model simulation. To restore visualization, select the Normal
simulation mode.

If you simulate a model in Accelerator or Rapid Accelerator mode,
SimMechanics issues a warning indicating that accelerator modes do not
support visualization. To remove the warning, disable visualization with
Mechanics Explorer:

1 In the Simulink Editor window for your model, select Simulation > Model
Configuration Parameters.

8-13

8 Code Generation

2 In the Model Configuration Parameters window, expand the
SimMechanics 2G node.

3 Select Explorer.

4 Clear the Open Mechanics Explorer on model update or simulation
check box.

Note Clearing the Open Mechanics Explorer on model update or
simulation check box disables Mechanics Explorer. When you return
to Normal simulation mode, check the box to restore visualization with

Mechanics Explorer.

SimMechanics Does Not Support Run-Time

Parameters

Model parameters are fixed during code generation. To change model
parameters, edit the parameters in SimMechanics and regenerate code for the
model. You can only change model parameters in SimMechanics itself.

Related ¢ “Configure Four-Bar Model for Code Generation” on page 8-5
Exqmples e “Configure Model for Rapid Acceleration Mode” on page 8-8
Concepts e “About Code Generation” on page 8-2

8-14

	toc
	Multibody Modeling
	Spatial Relationships
	Working with Frames
	Frames
	Frame Types
	Frame Transforms
	Frame Networks

	Representing Frames
	Identity Relationships
	Translation and Rotation
	Interpreting a Frame Network

	World and Reference Frames
	World Frame
	Reference Frame

	Frame Transformations
	Rigid and Time-Varying Transformations
	Rigid Transformation Example
	Reversing Rigid Transformations

	Rotation Methods
	Specifying Rotation
	Aligned Axes
	Standard Axis
	Arbitrary Axis

	Translation Methods
	Specifying Translation
	Cartesian
	Standard Axis
	Cylindrical

	Represent Binary Link Frame Tree
	Model Overview
	Modeling Approach
	Dimensions and Transforms
	Build Model
	Generate Binary Link Subsystem
	Visualize Model
	Save Custom Block

	Represent Box Frame Tree
	Model Overview
	Start Model
	Initialize Model Workspace Parameters
	Add Bottom Plane Frames
	Add Top Plane Frames
	Add Arch Frames
	Save Model

	Visualize Box Frame Tree
	Model Overview
	Build Model
	Visualize Model

	Find and Fix Frame Issues
	Rigidity Loops
	Shorted Rigid Transform Blocks

	Rigid Bodies
	Specifying Solid Geometry
	Simple Shapes
	Advanced Shapes
	General Extrusions
	Solids of Revolution

	Advanced Solid Shapes
	When to Use Extrusion and Revolution Shapes
	Specifying Extrusion and Revolution Shapes

	Revolution and General Extrusion Cross-Sections
	Revolution Coordinates are [x z] Pairs
	Revolution Axis Aligns with Z-Axis
	Revolution X-Coordinates Must Equal or Exceed Zero
	Extrusion Coordinates are [x y] Pairs
	Extrusion Axis Aligns with Z-Axis

	Cross-Section Coordinates
	Specifying Coordinates
	Coordinate Order
	Hollow Cross-Sections
	Path Intersection

	Specifying Solid Inertia
	Point Mass
	Adding a Point Mass to a Model
	Specifying Point Mass Inertia

	Mass Distribution
	Adding a Mass Distribution to a Model
	Automatically Calculating Inertia
	Specifying Custom Inertia

	Inertia Tensor
	Specifying Inertia Tensor
	Moments of Inertia
	Products of Inertia

	Solid Color
	Basic Graphic Parameters
	Advanced Graphic Parameters

	RGBA Color Vectors
	Model Cone
	Model Overview
	Modeling Approach
	Build Model
	Specify Parameter Values
	Visualize Model

	Model Dome
	Model Overview
	Modeling Approach
	Build Model
	Specify Parameter Values
	Visualize Model

	Model I-Beam
	Model Overview
	Modeling Approach
	Build Model
	Specify Parameter Values
	Visualize I-Beam in Mechanics Explorer

	Model Box Beam
	Model Overview
	Modeling Approach
	Build Model
	Specify Parameter Values
	Visualize Box Beam in Mechanics Explorer

	Model Binary Link
	Model Overview
	Modeling Approach
	Solid Properties
	Build Model
	Update Subsystem
	Visualize Model
	Save Custom Library Block

	Model Two-Hole Binary Link
	Model Overview
	Build Model
	Generate Subsystem
	Visualize Model
	Save Custom Library Block

	Model Pivot Mount
	Model Overview
	Modeling Approach
	Build Model
	Generate Subsystem
	Visualize Model
	Save Custom Library Block

	Multibody Systems
	Assembling a Multibody Model
	Workflow
	Identify Joint Requirements
	Connect Rigid Bodies with Joints
	Specify Joint State Targets
	Check Assembly

	Modeling Joints
	Joint Frames
	Joint Primitives
	Prismatic
	Revolute
	Spherical

	Joint Primitive Composition
	Assembling Joints
	Guiding Joint Assembly

	Modeling Gear Constraints
	Gear Types
	Featured Examples
	Inertia, Geometry, and Efficiency
	Using Gear Blocks
	Assembling Rigid Bodies with Gear Constraints
	Common Gear Assembly and Simulation
	Common Gear Types
	Gear Dimensions
	Gear Pitch Circles
	Simulation

	Rack and Pinion Assembly and Simulation
	Gear Pitch Circles
	Simulation

	Identifying Assembly Issues
	Open Model Report
	Model Report Tabs
	Status Icons

	Model Double Pendulum
	Model Overview
	Modeling Approach
	Build Model
	Guide Model Assembly
	Visualize Model and Check Assembly Status
	Simulate Model
	Save Model

	Model Four-Bar Linkage
	Model Overview
	Modeling Approach
	Build Model
	Specify Block Parameters
	Guide Assembly and Visualize Model
	Simulate Model
	Save Model

	Correct Aiming Mechanism Assembly Error
	Model Overview
	Explore Model
	Update Model
	Troubleshoot Assembly Error
	Identifying Error Root Cause

	Correct Assembly Error
	Simulate Model
	Save Model

	Internal Mechanics, Actuation and Sensing
	Forces and Torques
	Force and Torque Blocks
	Actuating Rigid Bodies

	Joint Actuation
	Actuation Modes
	Motion Input
	Zero Motion Prescription

	Input Handling
	Assembly and Simulation

	Specify Motion Input Derivatives
	Joint Motion Actuation Restrictions
	Closed Loop Restriction
	Motion Actuation Not Available in Spherical Primitives
	Redundant Actuation Mode Not Supported
	Model Report and Mechanics Explorer Restrictions
	Motion-Controlled DOF Restriction

	Actuating and Sensing with Physical Signals
	Exposing Physical Signal Ports
	Providing Actuation Signals
	Extracting Sensing Signals

	Sensing Spatial Relationships
	Sensing Spatial Relationship Between Joint Frames
	Select Joint Parameters To Sense

	Sensing Spatial Relationship Between Arbitrary Frames
	Select Transform Sensor Parameters To Sense

	Rotation Measurements
	Measuring Rotation
	Axis-Angle Measurements
	Quaternion Measurements
	Transform Measurements

	Translation Measurements
	Measuring Translation
	Cartesian Measurements
	Transform Sensor
	Joints

	Cylindrical Measurements
	Transform Sensor

	Spherical Measurements
	Transform Sensor

	Measurement Frames
	Measurement Frame Purpose
	Measurement Frame Types

	Sense Double-Pendulum Motion
	Model Overview
	Modeling Approach
	Build Model
	Guide Model Assembly
	Simulate Model
	Simulate Chaotic Motion

	Save Model

	Prescribe Four-Bar Actuation Torque
	Model Overview
	Four-Bar Linkages
	Links
	Linkages
	Grashof Condition
	Grashof Linkages

	Modeling Approach
	Build Model
	Provide Joint Actuation Input
	Specify Joint Internal Mechanics
	Sense Link Position Coordinates

	Simulate Model
	Simulate Model in Double-Crank Mode
	Simulate Model in Double-Rocker Mode

	Prescribe Four-Bar Motion
	Model Overview
	Build Model
	Simulate Model
	Actuate Model Using Sensed Torque
	Guide Model Assembly
	Simulate Updated Model

	Prescribe Two-Bar Motion
	Model Overview
	Add Virtual Joint
	Add Motion Inputs
	Add Actuation Torque Outputs
	Simulate Model

	Simulation and Analysis
	Simulation
	Configure Model for Simulation
	Specify Solver Settings

	Find and Fix Simulation Issues
	Models with For Each Subsystem blocks have limited visualization
	Models with Model blocks have no visualization
	Simscape local solvers do not work with SimMechanics

	Visualization and Animation
	Visualizing and Inspecting a Model
	Mechanics Explorer Window
	Visualization
	Model Navigation
	Model Property

	Model Report
	Animation

	Configure Visualization Settings
	Change Background Color
	Change View Point
	Change View Convention
	Display Multiple Screens
	Toggle Visibility of Frames and Mass Centers

	Rotate, Pan, and Zoom View
	Rotate, Pan, and Zoom Shortcuts
	Rotate View
	Pan View
	Zoom View

	Record Animation Video
	Record Video

	Adjust Video Playback Speed
	Variable-Step Solvers
	Fixed-Step Solvers

	Find and Fix Visualization Issues
	Mechanics Explorer Fails to Open
	Set Mechanics Explorer to Open on Model Update

	Model appears with different orientation in Mechanics Explorer
	Change View Convention

	Part appears invisible in Mechanics Explorer
	Correct Visualization Issue
	STL File Issues

	CAD Import
	About CAD Import
	CAD Translation
	CAD Translation Steps
	Software Requirements

	CAD Import
	Importing a Model
	Generating Import Files
	SimMechanics XML Schema

	Install and Register SimMechanics Link Software
	SimMechanics Link Installation Requirements
	Download SimMechanics Link Software
	Install SimMechanics Link Software
	Register SimMechanics Link Utility with CAD Platform
	Link External Application to SimMechanics Link Software
	Register MATLAB as Automation Server
	Registration Requirements
	Enable Automation Server Mode
	Connection from External Application to MATLAB Automation Server

	Unregister SimMechanics Link Software

	SimMechanics Import XML File
	Organization of SimMechanics XML Import File
	Root Assembly
	InstanceTree
	Constraints

	Organization of Assemblies
	Organization of Parts
	Part Names
	Physical Units
	Solid Parameters
	Geometry File References

	Import Robot Arm Model
	Check Import Files
	Import Robot Assembly
	Visualize and Simulate Robot Assembly

	Import Stewart Platform Model
	Check Import Files
	Import Model
	Visualize and Simulate Robot Assembly

	Find and Fix CAD Import Issues
	Model replaces certain CAD constraints with rigid connections
	Identify and Change Automatic Rigid Connections

	Model appears with different orientation in Mechanics Explorer
	Change View Convention

	Part appears invisible in Mechanics Explorer
	Correct Visualization Issue
	STL File Issues

	Deployment
	Code Generation
	About Code Generation
	Simulation Accelerator Modes
	Model Deployment

	Configure Four-Bar Model for Code Generation
	Configure Model

	Configure Model for Rapid Acceleration Mode
	Model Overview
	Configure Model

	Find and Fix Code Generation Issues
	Variable step Simulink solver requires rsim.tlc target
	Simulink solver must be continuous
	SimMechanics does not support visualization in accelerator mode
	SimMechanics Does Not Support Run-Time Parameters

